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Preface

Multi-agent systems are communities of problem-solving entities that can exhibit
varying degrees of intelligence. They can perceive and react to their environment,
they can have individual or joint goals, for which they can plan and execute
actions. Work on such systems integrates many technologies and concepts in ar-
tificial intelligence and other areas of computing as well as other disciplines. The
agent paradigm has become widely popular and widely used in recent years, due
to its applicability to a large range of domains, from search engines to educa-
tional aids to electronic commerce and trade, e-procurement, recommendation
systems, simulation and routing, and ambient intelligence, to cite only some.

Computational logic provides a well-defined, general, and rigorous framework
for studying syntax, semantics, and procedures for various capabilities and func-
tionalities of individual agents, as well as interaction amongst agents in multi-agent
systems. It also provides a well-defined and rigorous framework for implementa-
tions, environments, tools, and standards, and for linking together specification
and verification of properties of individual agents and multi-agent systems.

The CLIMA workshop series was founded to provide a forum for discussing,
presenting, and promoting computational logic-based approaches in the design,
development, analysis, and application of multi-agent systems.

The first workshop in these series took place in 1999 in Las Cruces, New Mexico,
USA, under the title Multi-Agent Systems in Logic Programming (MASLP 1999),
and was affiliated with ICLP 1999. The name of the workshop changed after that to
Computational Logic in Multi-Agent Systems (CLIMA), and it has since been held
in the UK, Cyprus, Denmark, USA, Portugal, and Japan. Further information
about the CLIMA series, including past and future events and publications, can
be found at http://centria.di.fct.unl.pt/ clima.

The eighth edition of CLIMA (CLIMA VIII) was held during September 10-11,
2007 in Porto, Portugal. It was co-located with ICLP 2007 (International Confer-
ence on Logic Programming). It received 30 submissions for regular papers and 3
submissions for system description papers, with about 40 delegates registered for
participation. More details about the event can be found at
http://research.nii.ac.jp/climaVIII/.

This volume of post-proceedings contains revised and improved versions of
14 regular papers and 1 system description paper presented at the workshop, as
well as the workshop invited paper, by Witteveen, Steenhuisen, and Zhang on
plan co-ordination. All the papers included in the post-proceedings have gone
through a thorough revision process, with at least two, and in the majority of
cases, three rounds of reviewing, with at least seven reviews, for each paper.

The accepted papers cover a broad range of topics. The invited paper ad-
dresses problems of interdependencies and co-ordination of task-based planning
in multi-agent systems where multiple agents are required to find a joint plan.
The paper by Hommersom and Lucas explores how interval temporal logic can
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be extended to provide an operator describing failure, useful for modeling agents’
failures in performing tasks, for example, because of the dynamic nature of the
environment. Jamroga and Bulling describe how game theoretic concepts can
be used within an alternating-time temporal logic to provide a formalism for
reasoning about rational agents. Pereira et al. propose an Emotional-BDI model
of agency that allows the emotions of fear, anxiety, and self-confidence, con-
tributing to agent behavior as well as the more conventional beliefs, desires, and
intentions. The paper by Boersen and Brunel investigates properties concerning
persistence into the future of obligations that have not been fulfilled yet.

Hakli and Negri give a proof theory for multi-agent epistemic logic with oper-
ators for distributed knowledge, whereby a proposition follows from the totality
of what the members of a group know. In their regular paper, Slota and Leite
give a transformational semantics for Evolving Logic Programs (EVOLP), prove
its soundness and completeness, and discuss the complexity of the transforma-
tion. They use this transformation for an implementation of EVOLP which is
described in their systems paper.

Dennis et al. propose, and provide semantics for, extensions of programming
languages that are based on the BDI type of agent models. The extensions are
aimed at allowing representation of organizational structures in multi-agent sys-
tems. Bryl et al. extend Tropos, a well-known agent-oriented early requirements
engineering framework, and then show how the extended framework can be trans-
lated into a framework of abductive logic programming. Costantini et al. describe
a heuristic algorithm for agent negotiation that exploits projections in convex
regions of admissible values and discuss its implementation and complexity.

A collection of three papers are related to argumentation. Hezart et al. pro-
pose context-sensitive defeasible rules for argumentation-based defeasible rea-
soning. Stranders et al. describe a fuzzy argumentation framework for reasoning
about trsut in agents. Toni proposes an approach to the selection and composi-
tion of services based on assumption-based argumentation.

Belardinelli and Lomuscio focus on the topic of first-order epistemic logic and
give a sound and complete axiomatization for quantified interpreted systems.
Gore and Nguyen give a tableau calculus for a class of modal logics and argue
its usefulness in reasoning about agent beliefs.

We would like to thank all the authors for responding to the call for papers
with their high-quality submissions, and for responding to and taking account
of the reviewers comments thoroughly in revising their contributions for inclu-
sion in this volume. We are also grateful to the members of the CLIMA VIII
Programme Committee and other reviewers for their valuable work in reviewing
and discussing the submitted articles over several rounds of reviews. We would
also like to thank the ICLP and the local organizers in Portugal for all their
help and support. We are grateful to the local organizers for handling all the
registration details and providing a very enjoyable social programme.

April 2008 Fariba Sadri
Ken Satoh
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Plan-Coordination Mechanisms and
the Price of Autonomy

J. Renze Steenhuisen, Cees Witteveen, and Yingqian Zhang

Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Mekelweg 4, 2628CD Delft, The Netherlands
{J.R.Steenhuisen,C.Witteveen, Yingqgian.Zhang}@tudelft.nl

Abstract. Task-based planning problems for multi-agent systems re-
quire multiple agents to find a joint plan for a constrained set of tasks.
Typically, each agent receives a subset of tasks to complete. Due to
task interdependencies, such task allocations induce interdependencies
between agents as well. These interdependencies will prevent the agents
from making a plan for their subset of tasks independently from each
other, since the combination of such autonomously constructed plans will
most probably result in conflicting plans. Therefore, a plan-coordination
mechanism is needed to guarantee a conflict-free globally feasible plan.

In this paper, we first present a brief overview of the main results
achieved on plan coordination for autonomous planning agents, distin-
guishing between problems associated with deciding whether a coor-
dination mechanism is necessary, designing an arbitrary coordination
mechanism, and designing an optimal (minimal) coordination mecha-
nism. After finding out that designing an optimal coordination mech-
anism is difficult, we concentrate on an algorithm that is able to find
a (non-trivial) coordination mechanism that is not always minimal. We
then discuss some subclasses of plan-coordination instances where this
algorithm performs very badly, but also some class of instances where a
nearly optimal coordination mechanism is returned.

Hereafter, we discuss the price of autonomy as a measure to determine
the loss of (global) performance of a system due to the use of a coordina-
tion mechanism, and we offer a case study on multi-modal transportation
where a coordination mechanism can be designed that offers minimal re-
strictions and guarantee nearly optimal performance. We will also place
the use of these coordination mechanisms in a more general perspective,
claiming that they can be used to reuse existing (single) agent software
in a complex multi-agent environment.

Finally, we briefly discuss some recent extensions of our coordination
framework dealing with temporal planning aspects.

Keywords: Complex tasks, planning, coordination, autonomy, multi-
agent systems.

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008
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1 Introduction

Task planning is the problem of finding a suitable plan for carrying out a com-
plex task. By calling a task complex, we mean that (i) it consists of a number
of elementary tasks that (7i) are interdependent, and (i) (usually) cannot be
completed by a single agent. For example, building a house constitutes a complex
task since it consists of laying a foundation, then building the walls and the roof,
then assembling the cases and painting the walls, assembling doors, etc. Typi-
cally, each of these tasks requires a different agent. Other examples that come
to mind are building a large ship on a wharf, preparing a manned spacecraft for
launch, and planning inter-modal transportation jobs.

Usually, we specify such a complex task 7 by stating the set T" of elementary
tasks to be completed, the set of capabilities required to execute each elementary
task, and a set of constraints between the tasks that have to be respected in order
to ensure a correct execution of the complex task.

The specification of the capabilities is important in deciding which agent will
execute which (elementary) task. In this paper, however, we will not pay atten-
tion to this important (task allocation) problerd] and simply assume that task
allocation has been completed and that each agent has to find a way to achieve
the set of tasks allocated to it. Therefore, we will simply omit the specification
of the capabilities required.

A complex task then is a tuple 7 = (T, <) where T is a finite set of (elemen-
tary) tasks and < is a partial order. Each elementary task ¢t € T', or simply task,
is a unit of work that can be executed by a single agent. These elementary tasks
are interrelated by a partially-ordered precedence relation <: A task t; is said to
precede a task to, denoted by #1 < to, if the execution of t2 may not start until
t1 has been completedE For example, building a wall of a house may not start
before the work on the foundations has been completed.

Suppose that such a complex task 7 = (T, <) is given to a set of autonomous
planning agents A = {41, Ag, ..., A, }. We assume that the tasks in T are as-
signed to the agents in A by some task assignment f : T — A, thereby inducing
a partitioning {T;}1, of T, where T; = {t € T | f(t) = A;} denotes the set of
tasks allocated to agent A;.

Example 1. There are two agents involved in a complex construction task. Agent
A has to deliver bricks (¢1) to agent A who will use them to build a wall (¢2).
Agent Ay also has to ensure that garbage is collected (¢3) and to deliver it to
agent Ay (t4). Agent A; has to pickup the garbage (t5), and then to transport
it from the construction place to a dumping ground (ts).

! How to find a suitable assignment for a set of agents is an interesting problem on its
own [TI2].

2 Of course, this interpretation of the precedence relation might vary. In general, we
might interpret ¢ < ¢’ as task ¢ should {start, be completed} before task ¢’ is allowed
to {start, be completed}.
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O \=O (") Az

Fig. 1. A specification of a complex task. The tasks are allocated to two agents: A;
and As. Task dependencies are denoted by arrows.

There are some natural precedence relations between the tasks that must be
obeyed: t1 < ta, t3 < t4, t4 < t5, and t5 < tg. For an illustration of this complex
task, see Figure[Il

As a result of this task assignment, each agent A; also inherits the precedence
constraints that apply to Tj, i.e., the set <;=< N (T; x T;). These sets <; to-
gether constitute the set <;n4rq= U?:l =<, of intra-agent constraints, while the
remaining set of constraints <;pter== \ <intra constitutes the set of inter-agent
constraints. So each agent A; is now responsible for achieving the (complex)
subtask (73, <;), while the agents depend on each other via the inter-agent con-
straints <;nter-

Ezample 2. Continuing Example [I as the result of task allocation, the set T is
partitioned into two sets Ty = {¢1,t5,%6} and T = {t2,t3,t4}. The set of inter-
agent constraints is <nter= {t1 < t2,ts < t5}, while the intra-agent constraints
are <1= {t5 < t6} and <o= {tg < t4}.

Due to time and resource constraints, an agent A; will be forced to make a
plan for its set of tasks T;. Such a plan should be understood as the specifica-
tion of some partially-ordered set of actions (plan steps) that satisfies the task
constraints between the tasks given to the agents. It is not important to know
exactly which planning tools are used by the agent and which set of primitive ac-
tions is used to construct the plan: What counts is that the plan respects all the
task constraints <;. As a consequence, we assume that, whatever plan/schedule
representation the agents (internally) employ, the result of an internal plan P;,
developed by agent A; for its set of tasks T;, can always be specified by a structure
P; = (T3, <}) that refines the structure (T}, <;). We, therefore, require <; C<¥
to hold, which means that an agent’s plan must respect the original precedence
relation <;, but his plan may of course induce additional constraints.

Remark 1. The plan representation P; = (T}, <}) may be viewed as an abstrac-
tion of a concrete original plan Pf. Suppose that the concrete plan can be mod-
elled as a partially-ordered set S of plan steps, i.e., Pf = (S, <). Then we say that
P; = (T}, <) is an abstraction of P¢ if there exists some function steps : T; — 25
mapping tasks to plan steps, such that (i) for every task ¢ € T;, the concrete
sub plan (steps(t), <) of Pf realises task ¢, and (ii) for every ¢,t' € T; : t <} t/
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iff Vs € steps(t) Vs’ € steps(t') : s < s’. Note that such a concrete plan might
contain plan steps s that have no relationship with any task ¢.

Example 3. Continuing our previous example, our agent A; who has to deliver
bricks (¢1) and to pickup the garbage (¢5), and then to carry it away (¢g) might
construct a plan where he first drives with his truck to the construction place,
will pickup the garbage, drives to the dumping place, takes some coffee, then
loads some bricks and drives back to the construction place. This plan induces
the following order on the tasks to be completed: 5 < tg < t1. Hence, his
plan can be represented as Pi = (T4, <7) where <= {t5 <} 6,16 <] t1} is a
refinement of <; and, therefore, is a valid plan for (T, <1).

Often, when more than one agent is involved in the task-planning process, we have
to take into account some degree of autonomy that each of the participating agents
might require when planning its part of the job. Here, autonomy has to be under-
stood in the sense that an agent A; is not able to predict exactly how the plan P; of
another agent A; will look like for the set of tasks T given to that agent, and vice
versa. However, as the result of allocating subsets of tasks to different agents, these
agents might become interdependent as interdependent tasks might be allocated
to different agents. The result of, on the one hand, interdependency and, on the
other hand, unpredictability of individual planning outcomes, might easily lead to
conflicting plans, in the sense that the structure P = (T, (U, <F) U <inter),
resulting from joining the individual plans, is no longer partially ordered. If this
is the case, we call the resulting joint plan P infeasible.

Ezxample 4. Continuing the example, suppose that agent A, develops a plan
completely independent from agent A;. This agent might decide to execute to
before t3 and creates a plan Py = (T4, <3) where <5= (to <3 t3,t3 <35 ta). The
result of this plan together with the plan P; of agent A; (see Example B)) is
depicted in Figure[2l As can be seen, the two plans together create a cycle and,
therefore, constitute an infeasible joint plan.

Obviously, due to this combination of task dependencies and independent plan-
ning, some form of coordination mechanism [3] is needed to ensure that the
results of the individual task-planning processes are jointly feasible.

Ao

Fig. 2. Two plans of the agents, resulting in an infeasible joint plan
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In this paper, we will address the following plan-coordination problem for self-
interested planning agents: How to provide adequate coordination mechanisms
for autonomous planning systems that want to plan independently and are not
willing or able to revise their plans. In particular,

1. we present a framework for studying this plan-coordination problem,

2. we investigate the computational complexity of designing such plan-coord-
ination mechanisms, and

3. we discuss the price of autonomy, investigating the additional costs incurred
by independent planning.

Organisation. This paper is organised as follows. First, we present a brief
overview of research on (plan) coordination to make clear what the relation is
between our approach to plan coordination and other approaches. Second, we
present our framework for plan coordination for self-interested agents and we
give an overview of the complexity results obtained for designing adequate plan-
coordination mechanisms. To prepare the reader for a case study of the applica-
tion of coordination in logistic problems, we discuss a polynomial algorithm that
can be used to find a suitable coordination mechanism. We prove that for some
particular classes of complex tasks it delivers a nearly optimal mechanism. After
introducing the price of autonomy, we apply this algorithm to a logistic prob-
lem, showing that in some particular cases plan-coordination mechanisms can be
applied with almost negligible overhead, while ensuring autonomous planning.

2 Plan Coordination for Autonomous Planning Agents

2.1 Background

In general, a plan-coordination mechanism should guarantee, by possibly re-
designing the original planning task, some minimal overall performance even if
the agents are completely selfish [3].

Redesigning the original planning task usually imposes additional restrictions
on the tasks to be completed in order to guarantee a minimal performance. In
general, such additional restrictions will possibly affect both the planning free-
dom of the participating agents and the quality (cost, efficiency) of the plans
they are able to develop. Therefore, we propose to define the quality of a plan-
coordination mechanism both in terms of the tightness of the restrictions im-
posed, and the overall plan quality it ensures. Such a definition, however, would
neglect an important factor that influences the choice of an adequate coordi-
nation mechanism: the collaboration level between the agents. Depending on
this collaboration level we have to determine which coordination mechanism is
suitable for the agents and this also determines the quality of the (optimal) co-
ordination mechanism. For example, in approaches like [4l5] the authors propose
to manage the coordinated planning and execution of the tasks by letting the
agents keep each other informed about any changes (e.g., completed, new, or
re-scheduled tasks). Here, a plan-coordination mechanism can be designed to
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facilitate inter-agent information exchange in order to improve the quality of the
joint plan.

In other approaches, like the plan-merging approach [6], plans sometimes need
to be revised when merging them into an overall plan, despite that agents are
allowed to construct their plans independently. In this case, a plan-coordination
mechanism could facilitate the exchange of mutual plan information in order to
improve the overall plan quality by merging techniques.

It is clear that these approaches require the agents to be more or less collab-
orative, each agent willing to inform other agents about details of its individual
plan and/or willing to revise its plan when necessary. However, such approaches
are hardly usable if the agents are selfish (unwilling to communicate or revise
their plans), or are not able to do so (e.g., in disaster-rescue operations, when
communication is often impossible or difficult to establish).

Approaches to coordinating self-interested, non-cooperative agents, however,
are mostly concentrating on task execution processes that do not require exten-
sive forms of planning. Typical examples here are the study of (combinatorial)
auctions for task allocation and coalition formation processes in multi-agent sys-
tems [II7I8] and its relations to combinatorial optimisation problems (c.f. [9]).
In these approaches, the tasks to be completed consist of a set of atomic tasks
and each of the agents receives one single task of a subset of tasks. Even if the
task description is more elaborate like in the Traderbots architecture [10], it is
assumed that the set of subtasks does not require an elaborate planning process
to execute. Therefore, the problem of identifying planning constraints and the
problem of allocating them do not occur here.

2.2 The Plan Coordination Problem for Self-interested Agents

In contrast to the above mentioned approaches, some authors [ITIT2] studied
the (computational) properties of coordination mechanisms that can be used for
selfish planning agents. In such approaches, where the collaboration level is low
or even absent, it is assumed that the agents (i) require autonomous planning of
their part of the task, and (7i) are not willing to revise their own plan, thereby
ruling out any form of collaboration either during planning or after planning.
To meet such requirements, a plan-coordination mechanism should ensure that
whatever plans are proposed by the individual agents, their combination always
constitutes a feasible plan for the total set of tasks. The basic setup of such
an approach has been discussed in the Introduction. Summarizing, the main
ingredients of this framework are as follows:

1. We have a complex task 7 = (T, <), specifying a partially-ordered set of ele-
mentary tasks t € T, and a set of self-interested agents A = {43, Aa,..., An}
that require planning autonomy.

2. The tasks t € T are allocated to the agents A; inducing a task partitioning
(T {=i 2, <inter) where (T3, <;) is a partially-ordered complex task
allocated to agent A;. Here, <; is the restriction of < to (T; X T3), and <pnter
is the set of precedence relations between tasks allocated to different agents.
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3. Each agent A; is allowed to construct a plan P; for its set of tasks T; com-
pletely independent from the other agents. We assume that each such a plan
P; is representable as a partial order P; = (T}, <}) where <; C <7 (i.e., each
plan P; respects the local constraints <;).

Now, the coordination problem we are facing can be stated as follows.

How to ensure that, whatever plans P; = (T;, <¥) are developed by the in-
dividual agents A;, each respecting the local constraints <;, their
combination, together with the set of inter-agent constraints, constitutes
a feasible plan, that is, how to ensure that for every i and for every
partially-ordered extension <! of <;, the relation (U?:1 <) U <inter
again is a partial order?

As we have shown before [ITJI2], the only way to solve this problem is to
design a coordination mechanism that adds, to each set of individual precedence
constraints <;, a set A; of precedence constraints. The resulting set A = |JI_; A,
is called a coordination set and the redesigned complex task is said to be plan
coordinated.

Example 5. Let us consider the construction task from the previous examples. As
we have shown in Example[d] there exists some combination of plans that turns
out to be infeasible, creating a cycle. Therefore, this particular complex task
instance is not plan coordinated. If, however, we change the task specification
for agent A4; adding the coordination set A = Ay = {t; <3 t5} to the complex
task, no possible combination of plans developed by agent A; and Ay will create
a cycle (see Figure[3).

t5 7 t

A
t3 ty ty 2

Fig. 3. Adding a precedence constraint prevents conflicting plans

2.3 Complexity of Designing Plan Coordination Mechanisms: Some
Results

The results of this approach to plan coordination for self-interested agents can
be summarised as follows:

1. Verifying whether a plan-coordination mechanism is necessary. It
is intractable (CONP-complete) to decide whether or not a redesign of the
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planning task is necessary to ensure feasibility of the joint plan (i.e., the
problem to verify whether it is needed to design a plan-coordination mecha-
nism is intractable)[11]. This holds already for instances with a few (at least
4) tasks per agent. If, however, the number of agents is fixed, the problem is
polynomially decidable [12].

2. Designing an arbitrary coordination mechanism. It is always pos-
sible to find a (trivial) plan-coordination mechanism in polynomial time
that guarantees the existence of a joint conflict-free plan. So the problem
of finding an arbitrary plan-coordination problem is in P. The coordination
mechanism simply specifies some additional constraints to the complex task
to be solved in such a way that for every agent the set of tasks it has to
complete is totally ordered [I1].

3. Designing a minimal coordination mechanism. The construction of
a minimal plan-coordination mechanism (minimally redesigning the original
complex task specifications) is a highly complex task in itself. Even for in-
stances where the agents are assigned 2 tasks, it is already an NP-complete
problem, while in general, the problem of finding a minimal coordination
mechanism is ¥5-hard, even if the agents have a modest number of tasks (7
or more) to complete [12].

3 A Polynomial Algorithm to Achieve Plan Coordination

Since the problem of finding a minimal coordination set A is too complex to
solve in reasonable time (unless P = NP), and the trivial solution to the coor-
dination problem generates an inflexible solution, in this section, we investigate
an algorithm to produce a coordination set that is more flexible than the triv-
ial one, but not necessarily an optimal one. First, we show that the algorithm
indeed may perform very badly on some instances of the coordination problem.
Then we present a class of instances where the algorithm produces near-optimal
results.

The algorithm, called the Depth-Partitioning Algorithm, is based on the simple
construction described in Algorithm [I1

This algorithm is capable of making any complex task plan coordinated.

Ezxample 6. Let us consider the application of the algorithm to the complex
task 7 discussed in Example 1 and presented in Figure 1. There are six tasks
t1,...,t¢ involved. In Figure M, the depths of the tasks are indicated. Since the
tasks belonging to agent A; are t1,ts,tg, their different depths induce the set
Ay = {t1 <1 t5, t5 <1 tg} of constraints and as a result, the (new) precedence
tuple t; <1 t5 is added to <7 (indicated by the dashed arrow).

Likewise, since to, t3,t4 belong to agent Ao and the depth of ¢3 is smaller than
the depth of t4 and ta, AQ = {tg <9 l2, t3 <2 t4} and the (new) tuple ts <o 1o
is added to <3, again indicated by the dashed arrow. As can easily be seen, the
instance is plan coordinated, since traversing the arrows, the depth of the tasks
can never decrease and if a local plan constraint ¢ <; ' is added, it can only be
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Algorithm 1. Depth-Partitioning Algorithm.

1. Take the partially-ordered complex task 7 = (7T, <) and consider the subsets
T = {t € T | depth(t) = d} of tasks having the same depth in 7. Here, the depth
depth(t) of a task ¢ is defined as follows: If ¢ does not have predecessors in < then
depth(t) = 0, else depth(t) = 1 + max{depth(t') | t" < ¢}. The depth depth(T)
of the set of tasks T is the maximum value of depth(t) for a t € T. Note that
{1 gipgh(T) is a partitioning of T'.

2. Consider the task partitioning {7;};=; of 7" induced by the task allocation to the
agents {A;}7; and let T denote the set of tasks ¢ € T} such that depth(t) = d.

3. For every agent A;, let (T, T2, ... T) be the sequence of all (non-empty) sets
T2 sorted in increasing values of the depth value d;.

4. For every agent A;, let A; = {t <; t' : (t,t') € Tz.dj X Tidj“, i=12,...,k—1}
(i.e., all tasks of an agent A; occurring at a lower depth are required to precede all
tasks occurring at a higher depth).

5. Output A = J_; A

a=0 a=1 Vad=1
O ~~~~~~~~~ > ’vO A2
ts N iy )

Fig. 4. Applying the Depth Partitioning Algorithm to the task discussed in Example 1.
The dashed arrows indicate the precedence constraints added by the algorithm.

added if depth(t) < depth(t’). Hence, the task instance remains partially ordered
whatever locally feasible plan constraints are added by the agents.

Proposition 1. Let T = (T, <) be a complex task and A the set of additional
precedence constraints induced by the depth-partitioning algorithm given above.
Then the complex task T' = (T, < U A) is plan coordinated.

Proof. See Appendix A.

The quality of the coordination mechanism produced by an algorithm can be ex-
pressed as the number of constraints added by the algorithm versus the number
of constraints added by a minimal coordination mechanism. We will call this ra-
tio, a number greater than or equal to 1, the performance ratio of the algorithm.
The closer this ratio is to 1, the better the algorithm is. It is not difficult to see
that our simple algorithm can produce arbitrary bad coordination sets, which is
illustrated by the following example.



10 J.R. Steenhuisen, C. Witteveen, and Y. Zhang

Fig.5. A complex task (a) where the depth-partitioning algorithm performs badly,
adding 7 constraints (indicated by the dashed arcs, see (b)) where only one (from task
b to task a) is needed

Example 7. Consider the following complex task with n + 1 agents, each having
2 tasks. Each agent A;, for i = 1,2,...,n, has one task that precedes the task a
belonging to agent A, 1, while agent A,,;1 also has a second task b that has to
precede all (second) tasks of the other agents. In Figure B such a complex task
is depicted for n = 6.

If we add one constraint between task b and task a for agent A, 1 then the
instance is plan coordinated: Every inter-agent cycle is prevented by adding this
constraint. On the other hand, every task ¢ in this partially-ordered set of tasks
has either depth 0 or depth 1. Moreover, every agent has exactly one task of depth
0 and one task of depth 1. Therefore, the algorithm will produce n+ 1 additional
constraint arcs, for every agent one constraint. This shows that the performance
ratio of this algorithm is ”Jlrl and, hence, not bounded by a constant.

3.1 Task Chains

Although the algorithm produces coordination sets that are far from optimal
in general, special cases exist where the algorithm produces (nearly) optimal
results. One such a class is the class of complex tasks where the partial order
defined on T" generates a series of parallel chains each of depth d for some constant
d. An example of such a set of chains and a partitioning of the tasks is given in
Figure [0l Within this class we distinguish left-right and right-left chains and a
partitioning such that an agent A;, with ¢ = 0,1,...,d, has tasks of depth 7 in
left-right chains and tasks of depth d — i of right-left chains (see Figure [l). Let
us call a set of such chains of depth d a d-instance. If such a d-instance contains
k left-right and m right-left chains, we will call such a set a (d, k, m)-instance.
Note that the total number of tasks in such a set is |T'| = (d + 1) x (k +m).

It is not difficult to see that the minimum number of additional constraints to
make a (1, %k, m) set coordinated is k x m: In order to prevent cycles, we have to



Plan-Coordination Mechanisms and the Price of Autonomy 11

Fig. 6. A set of parallel chains (a (5,3, 3)-set) as a complex task (a). In (b), the set A;
of additional constraints for agent A; is shown.

add an arc between the beginning of a left-right and the end of every right-left
chain or vice-versa. Proceeding inductively, suppose that we add 1 to the length
of every chain in a given (d, k, m)-instance with d + 1 agents and we create an
additional agent to take care of the new tasks. Furthermore, suppose that the
original (d, k, m)-instance was already coordinated. Then it is not difficult to
see that again k X m coordination arcs have to be added in order to make this
instance plan coordinated. This implies the following result.

Observation 1. The minimum size of a coordination set to make a (d,k,m)-
instance plan coordinated is d X k x m.

We will show that the Depth-Partitioning Algorithm (Algorithm [Il) produces
minimal coordination sets for some (d, k, m)-sets. Note that the set of tasks of
every agent (except the middle agent if d is evenﬁ consists of exactly two subsets
of tasks of different depth. If d is odd, the algorithm will, therefore, return a set
of (d+1) x k x m additional constraints. If d is even, there is exactly one agent
whose tasks all have the same depth. As a result, the algorithm will return a set
of d x k x m additional arcs. Hence, we have the following result.

Proposition 2. The depth-partitioning algorithm returns an optimal coordina-
tion set for every (d,k,m)-set, d > 1, where d is an even number. If d > 1 is
odd, the performance ratio of the algorithm is d'gl < 2.

In particular, these performance measures do not change if, instead of one agent
A; for every set of tasks at level 7 in left-right chains and depth d — 4 in right-left
chains, we have more than one agent for such a sets of tasks. One such example is
the logistic planning problem. Before we discuss this case, we will introduce the
price of autonomy to qualify coordination mechanisms in a more detailed way.

4 The Price of Autonomy and an Application to Logistic
Planning

A coordination mechanism like the one we discussed in the previous section
guarantees that a set of agents can plan independently. It realises this guarantee

3 Remember that d starts from 0. If d is even, the length of a chain and the number
of agents is odd.
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by imposing additional restrictions on the complex task to be completed. These
additional restrictions can be seen as one aspect of the price of autonomy, since
they restrict the planning freedom of the participating agents. One way to re-
duce the price of autonomy in this respect is to look for a minimum number of
additional constraints. Taking into account the loss of freedom, however, is only
one aspect of the price of autonomy.

Another, as important, behavioural aspect of autonomous planning is the
loss of performance it might incur: Due to autonomous planning, the joint plan
that is composed from the independently developed individual plans might have
a significantly higher cost than an optimal plan for the complex task when
assuming non-autonomous planners. So assuming an optimal (i.e., minimum)
coordination mechanism that can be found efficiently, we could define the price
of autonomy p w.r.t. the performance of the planning system as the ratio

_cost of joint plan composed of individually optimal plans 1
B cost of optimal joint plan (1)

Here, the cost of a joint plan refers to the cost of the concrete joint plan of
all agents together (see Remark [I). This implies that in order to establish the
price of autonomy we have to investigate a concrete planning domain, where the
set of plan steps used to compose plans is known and the cost of plans based
on ordering these plan steps can be determined. Here we have chosen a simple
logistic planning domain to investigate the price of autonomy.

4.1 Logistic Planning Problems

The logistic planning problem we have in mind consists of a triple (L,C,O)
where L is a set of m x n locations l; ; and C is a set of n cities ¢;. Each city ¢;
is a subset ¢; = {l;; | j =1,2,...,m} of m locations in L. O C (L x L) is a set
of orders o = (I, 1), indicating that a certain package has to be transported from
(pickup) location [ to (delivery) location I’. All locations belonging to a city ¢; are
interconnected via direct links. In each city ¢;, we distinguish a special location
l;1 as the airport of city c;. All airports are assumed to be interconnected via
direct flights. See Figure [ for a simple illustration.

We assume a truck to be available in each city to carry packages from one
location in the city to another. There is also a plane available carrying packages
from one airport to another. Both trucks and planes can carry any amount of
packages. We distinguish intra-city orders and inter-city orders. An intra-city
order requires a load action at the pickup location, a move action, and an unload
action at the destination location in the same city. So the cost of an intra-city
order is minimally 3 actions. For an inter-city order, we distinguish a pre-order
phase, a plane-phase, and a post-order phase. In the pre-order phase, an intra-
city order is carried out by transporting the package to the airport of the pickup
city. In the plane-phase, the package is transported to the destination airport.
In the post-order phase, the package is transported from the airport to its final
destination. So an inter-city transportation might require at least 6 load/unload
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Fig. 7. A logistics example with 4 cities and 3 locations per city. No orders are specified.

actions and at least 3 move actions. We use a simple uniform cost model where
every load, unload and move action has unit cost. Hence, the cost of a plan
simply equals the number of actions it contains.

Given an instance (L, C,O) of this logistic planning problem we are looking
for a plan P that carries out all orders in O. Such a plan is a sequence of
load/unload and move actions completing all the orders in O. The cost of P,
denoted by ¢(P), is the sum of the cost of all (move, load and unload) actions
occurring in P and of course, we would like to obtain an optimal plan P*, i.e.,
a plan with minimum cost

4.2 Coordinating the Logistic Planning Problem

Note that an instance (L, C,O) of the logistic planning problem can be easily
translated into a complex task (T, <): Every inter-city order o; consists of a
linearly-ordered sequence of three elementary tasks ;1 < tj2 < t;3, where ¢;; is
a truck task of transporting the package from its pickup location to the airport,
t;o is the plane task of transporting the package to the airport of the destination
city, and finally ¢;3 is a truck task consisting in transporting the package to
its destination location. Note that the task assignment is trivial here, since the
pre- and post-order phase of an order o € O are assigned to the truck agent in
the city where the pick-up and delivery location belong to, respectively, and the
plane-phase orders are assigned to the plane agent. Note that the set O of orders
induces a 2-instance (an instance containing chains of length 3) of size |O] in the
complex task (T, <).

It is easy to see that a feasible joint solution is not guaranteed if the truck
and plane agents plan independently from each other. Applying the Depth-
partitioning algorithm on this 2-set, it is easy to see that the set of orders O;
of every truck agent T; is partitioned into two sets OY and O?: The first set is
the set of all pre-order transportations tasks (of depth d = 0 to the airport of
the city, and O? is the set of all post-order transportation tasks of depth d = 2.

4 Note that we are not looking for a minimum time plan.
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The Depth-partitioning algorithm forces the addition] of the constraints ¢ < ¢/
for every t € OY and t' € O?. Since the complex task induced by the logistic
planning problem is a (2, k, m)-instance, from the discussion in Section 3.1, it
can be easily seen that this set of additional constraints is a minimum set.

The Depth-partitioning algorithm now guarantees that every plan developed
by any of the truck agents and every plan developed by the plane agent can be
joined together to constitute a feasible plan for the complex task. Moreover, for
this particular logistic problem, it guarantees that the coordination mechanism
imposes a minimum amount of additional constraints.

We would like to determine the price of autonomy p, that is the cost incurred
by the coordination mechanism. This cost measure is determined by the sum
of the costs of the individually optimal plans developed by the agents versus
the cost of the globally optimal transportation plan. Apparently, the cost of the
optimal plan seems to be fixed: Every transportation order requires 6 load and
unload actions and 3 move actions, so the cost of n transportation orders would
be > 9n using a uniform cost model. This line of reasoning, however, does not
recognise that we can often build cheaper plans by carefully combining pickup
and delivery orders. For example, if a truck has to bring m packages from city
locations to the airport, a worst-case plan would be first to drive to the first
pickup location then to bring each package to the airport separately, incurring a
cost of 1 pickup 4+ 1 move + 1 delivery = 3 actions per order + m move actions
to go to the pickup locations. This will result in a plan cost of 3m + m = 4m.
A better plan, however, would be first to drive to all pickup locations, picking
up all packages (2m actions) then to drive to the airport (1 move action) and
finally to unload the truck (m actions). This requires a plan with cost at most
3m+ 1. Likewise, the cost of an optimal plane plan depends on finding a smallest
number of move actions required to satisfy all transportation orders.

4.3 Visiting Sequences

To determine the price of autonomy, we have to determine the sum c(P}.) of
the costs of the independently constructed (locally) optimal plans and the cost
¢(P*) of the optimal plan. From the discussion above, we conclude that to find
these optimal plans, we have to find the minimal number of move actions in
each of these plans. This number of move actions required can be determined by
introducing the notion of a wisiting sequence.

Let L = {i1,l2,...,1,} be aset of locations in a given city (or a set of airports)
and let O C (L x L) be a set of pickup-delivery orders over L. We assume that
all locations are directly connected and the cost to travel from ¢; to ¢; is the
same (one move action) for all i # j.

A (move) plan for carrying out the set of orders O can be represented by
a sequence S of locations over L such that all pickup-delivery orders can be
carried out by visiting the locations in the order indicated by S. Such a wisiting
sequence S is a sequence over L with possible repetitions. An order (I,1') € O

5 The plane tasks, however, all belong to one partition.
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is fulfilled by a sequence S' if there exists sub-sequences «, 3, over L such that
S = alBl'y (i.e., S contains an occurrence of [ before an occurrence of I’). A
visiting sequence S over L is a solution to the instance (L, C,O) if all orders in
O are fulfilled by S.

The problem to find an arbitrary visiting sequence solution S for a set of orders
O is an easy problem: Let S’ be an arbitrary sequence where every city in L occurs
exactly once and consider the concatenation S = S’0.5”. Since for every (I,1') € O
an occurrence of [ in the first subsequence and an occurrence of I’ in the second
subsequence can be selected, clearly, S is a solution. However, to find an optimal
solution S* (i.e., a visiting sequence of minimum length) is intractable. This mini-
mal visiting sequence problem is an NP-hard problem since the NP-hard Feedback
Vertex Set (FVS) [13] is polynomially reducible to it.

Without loss of generality, we may assume that for every visiting sequence so-
lution S for O it holds that no location [ mentioned in O occurs more than twice
in S. Otherwise, just keep the first and the last occurrence of [ in .S and we still
have a solution. Therefore, for every visiting sequence solution S, it should hold
that | S| < 2 x |S*|, since every location [ in O should appear at least once in S*.

4.4 Determining the Price of Autonomy

Note that the length of a visiting sequence S can be used to determine the cost
of a plan P for a (truck or plane) planning problem: If S is the visiting sequence
solution for the set of orders, the cost ¢(P) of the corresponding transportation
plan P equals ¢(P) = 2-|0] + |S] (i.e., when taking into account one additional
load and one unload action per action, each of unit cost).

We can now determine the price of autonomy for the logistic planning problem
as follows: Let p be the number of orders, n the number of cities and m+1 > 2
the number of locations per cityﬁ Without loss of generality, we may assume
that each location in each city is mentioned at least once in the set of orders.
Therefore, p > 0.5(n x m), because every order specifies two different locations
(not equal to the airport).

Let us first consider the cost ¢(F}5,) of the combination of locally optimal
plans. Each order requires 6 load and unload actions, so we need 6p load and
unload actions in total. Suppose that in city ¢; we have m;; pickup locations
and m;o delivery locations. Clearly, we should have m < m;; + m;2 < 2m. To
transport packages to the airport we need at most m;; + 1 move actions per
city and to transport them from the airport we need m;> move actions per city.
This means at least m + 1 < my;; +m;2 + 1 < 2m + 1 move actions per city c¢;.
To transport the packages by plane, we need a minimal visiting sequence S;; for
pickup and delivery at the n airports. Hence, the total cost of the optimal joint
plan P} allowing independent planning equals

c(Plhe) = 6p+ > _(ma +mig +1) + S5 (2)
i=1

5 We assume that all orders create a transportation chain of length 3, which implies
that every order requires transportation to and from an airport.
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Considering the cost of a globally optimal plan P*, we note that in every city
transporting packages to the airport might be combined with the delivery of
packages arrived by plane to their final destinations. Since every location in a
city is mentioned at least once in some order (either as destination location or
as source location) this number of (combined) move actions per city is m + 1,
so for all cities in total (m 4 1) x n. The number of plane moves is |S/*|, where
the optimal plane plan has to satisfy additional constraints allowing for efficient
pre- and post transportation. Thus, the total cost for the minimal plan |P*| is

c(P*) =6p+ (m+1)n+|S)|, (3)
where |S7*| > |S¥| since S is a globally optimal move plan for the plane. Hence,

p= CPe) _ Op+ 3y (man +ma +1) + 5] )
c(P*) 6p + (m + 1)n + [S)| '
This ratio is maximal if m;; = mys = m for ¢« = 1,2,...,n, implying that
p > m x n. Using the constraint |S/*| > |S%| > n, we derive
(P 6mn+2mn+2n 8m+2 8
p= (loc)S + + _ + < ~114. (5)
c(P*) 6mn+mn+2n  Tm+2 7
Note that this price of autonomy is based on the assumption that the plane plan
to be developed by the plane agent is optimal (i.e., it costs an optimal number
of |S’| move actions). As we have remarked above, determining this optimal
visiting sequence is an intractable problem. If we don’t require this plane plan
to be optimal, the total number of move actions can be at most twice the number
of move actions in an optimal plan. Then, we can determine the effective price
of autonomy pegr as

c(Pegy) - 6p +2mn +n+2 x |S;| - 8mn + 3n - 11

= ~122. (6
Peff c(P*) = OGp+mn+n+[SE T Tmn+2n " 9 (©)

Remark 2. To place this result into perspective, we should mention that, unless
there is some major breakthrough in complexity theoryE we cannot hope for an
e-approximation algorithm that solves the minimum visiting sequence problem
with € < 2. This implies that the best performance ratio of an approximation
algorithm for the logistic planning problem with p = mn and m = 1 we can
hope for is
_6mn—|—(m+1)n—|—2><|5;2|_7mn+3n_7—|—3>10N111 )
T 6mn+(m+)n+|SE  Tmn42n T+2° 9
If we compare this result with Equation [f] and m = 1 this directly implies
that the best polynomial approximation algorithm would introduce almost the
same overhead (worstcase) as locally optimal algorithms for solving the logistic
problem with our coordination mechanism do.

" The breakthrough would be finding a constant-approximation algorithm for the Min-
imum Directed Feedback Vertex Set-problem.
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5 Experimental Results

The results obtained in the previous sections are theoretical and worst-case results.
We are guaranteed that the price of autonomy is never worse than about 1.22 im-
plying that we do not increase the cost of our joint plan too much, compared to the
cost of an optimal plan. Now, we will compare the performance of our coordination
approach with planners that aim to solve the logistic problem centrally.

With this comparison we want to show two things: First, the average per-
formance of our coordination approach is much better than what should be
expected, if the worst-case performance ratio is taken as the norm. Second,
the coordination approach can be used to enhance the planning power of exist-
ing planners significantly, thereby showing that it enables single-agent planning
technology to be used in multi-agent problems.

In the Artificial Intelligence Planning and Scheduling (AIPS) competition of
the year 2000, several general-purpose planning systems competed in a number
of planning domains. The logistic planning problem as described in Section 1]
was one of the domains featured. We have used the AIPS logistics dataset in
our experiments because of its status as a benchmark problem set, and also
because it allows us to compare our decomposition-by-coordination approach to
a selection of centralised planning systems.

In Table[ll we compare plan cost (in terms of the number of moves in a plan)
for four planners. In the second column, the costs of the optimal plans are given
as calculated by encoding the complete instance as an ILP-problem and solving
it exactly (of course not taking into account the time needed to find a solution).
The third column represents the cost of the plans produced using the coordina-
tion approach. The fourth, fifth, and sixth columns represent a selection of the
planning systems competing in the AIPS: The competition-winning TALplan-
ner [I4], and the above-average performers STAN [I5] and HSP2 [16]. Each row
in Table [Il represents an instance in the dataset, characterised by the number

Table 1. Results for 12 randomly chosen instances from the AIPS logistics dataset.
For each instance the minimum number of moves is determined and for each planner
the number of moves produced is given.

nr packages min nr moves Coordination TALplanner STAN HSP2

20 107 113 111 110 145
25 143 150 152 149 206
30 175 182 183 177 250
35 177 181 186 182 264
40 228 239 239 232 337
45 269 284 285 276 -
50 286 299 306 293 -
55 319 327 338 326 -
60 369 391 398 376 -
65 371 387 397 382 -
70 405 426 437 416 -

5 438 458 471 448 -
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of packages that have to be transported for that instance. Of the roughly 200
instances in the dataset, we have made a random selection of 12.

It will come as no surprise that the results produced using the coordination
approach, especially since the local plans were in fact solved exactly, deviate
little from the optimal plans (less than 5% on average). This is significantly
better than the expected (25%) based on the worst-case performance ratio.

The plans produced by the coordination approach are comparable in quality
with the plans produced by STAN (only 2% deviating from the optimum) and
TALplanner (about 7%). To illustrate that for some solvers the problems in the
logistics dataset are far from trivial, HSP2 does not manage to solve (within
reasonable time and memory constraints) any instances where more than 40
packages have to be transported, and produces significantly worse plans (about
44% deviating from the optimum). The CPU-times needed to produce the plans
by the coordination approach were a few seconds for each of the planning in-
stances occurring in Table [Tl

As we remarked before, the coordination approach cannot only be used to
solve multi-agent planning problems using simpler single-agent planning tools.
We can also apply it as a pre-processing step for a given planning system that has
trouble solving such multi-agent planning problems. The idea is then to decom-
pose the problem into smaller sub-problems that can be solved independently by
the planning system. Thereafter, the solutions to the sub-problems can simply
be combined into a solution to the whole problem instance.

Specifically, we propose to use the coordination approach to decompose a
multi-agent logistics instance into a set of single-agent planning problems. Then,
feed each of the single-agent planning sub-problems to the planning system, and
combine the results (plans) according to the protocol into an overall plan, thereby
solving the complete multi-agent instance. What we would like to see using this
method is significant savings in computation time without significant loss in
plan quality compared to the use of the planner solving the complete instance.
For this experiment, we chose STAN (since it produced the best plans for the
complete instance) and HSP2 (since it consumed a lot of CPU time).

To test these expectations, we randomly selected 51 problems from the lo-
gistics planning dataset and observed both the reduction in CPU-time and the
reduction in plan cost, comparing a solution produced by using only the plan-
ner with a solution by using the planner in combination with the coordination
approach. The results are given in Figure B

It can be o0wbserved that both STAN and HSP2 definitely benefit from pre-
processing by the coordination approach: Both planning systems regularly achieve
savings in computation time of over 80%. In addition, we can see that HSP2 pro-
duces plans that are on average 20% cheaper (i.e., requiring 20% less actions). Also
note that the plan cost for STAN does not increase significantly when using the
coordination approach. Finally, it can be observed that even after a decomposi-
tion into smaller sub-problems, for quite some instances HSP2 again was not able
to produce a solution within reasonable time. This means that even for the local
planning problems HSP2 still has considerable difficulty in solving them.
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Fig. 8. Savings in CPU times and plan cost (#steps) when STAN and HSP2 make use
of the coordination approach as a pre-processing step

6 Discussion and Future Work

We discussed the plan-coordination problem for selfish agents. We showed that,
although optimal plan-coordination mechanisms are hard to obtain in general,
in some special cases a polynomial algorithm can be used to find minimal coor-
dination sets. We also discussed the price of autonomy as a means to determine
the performance loss one can expect when allowing a planning problem to be
solved by autonomous agents.

In more recent work [I7], we have extended this approach to tightly-coupled
tasks with dependency and synchronisation constraints. There, we show that
plan-coordination mechanisms exist for such complex tasks, but that they re-
quire information exchange after planning to establish the exact time of schedul-
ing synchronised tasks. This offers possibilities to extend the plan-coordination
approach to the domain of temporal planning. We also showed that we can also
provide coordination mechanisms for durative tasks with time constraints. More-
over, the techniques developed enable us to reduce the construction (and com-
plexity) from previously-developed coordination mechanisms to the construction
of coordination mechanisms for durative tasks with time constraints, implying
that the latter are at least as hard to design as the former mechanisms.

A final extension we study are coordination mechanisms for temporal tasks
where not only the feasibility of the total plan has to be guaranteed, but also
completion time of the total task has to be minimised [I8]. We show that,
while the problem can be easily solved if the agents are able to execute an un-
bounded number of tasks concurrently, the problem to find suitable coordination
algorithms in case the agents are autonomous and have bounded concurrency
is difficult. In this latter context, we can determine the price of autonomy with
respect to a coordination mechanism by taking the ratio of the completion time
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achieved by a coordination mechanism and the completion time achieved by a
dictatorial optimal algorithm. Analogously, we can establish the price of coordi-
nation by taking into account the number of additional constraints enforced by
the coordination mechanism. Taking both measures into account in determining
the quality of coordination mechanisms enforces us to look at Pareto-efficient
coordination mechanisms. In this way, we can choose the best alternative, given
a tolerated performance loss and a desired level of autonomy.
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Appendix
A Proof of Proposition 1

Proof. Suppose, on the contrary, that the resulting complex task 7" is not plan
coordinated. Then there must exists some cycle ¢ = (¢;,,tiy, - - -, i, , ti; ) Where

1. ¢ is not limited to tasks belonging to one agent, i.e., ¢ contains at least two
tasks t;; and t;, belonging to different agents.

2. c contains at least two tasks connected via a plan-refinement relation <.
This means that ¢ has a subsequence of tasks (ti;,ti, \sti; o sti; .,
tijinir)s Where (i, ti ,ti; ... ti;,,) is a <*-sequence of tasks belong-
ing to some agent A containing at least two different tasks, while the task
t belongs to another agent A’.

Uikt

Since t depends on t it follows that

Uitk
depth(t;,,,) < depth(t;, ). (8)

Due to the construction of the A;-sets, for every subsequence (t;,,, i, ,,,)
of an intra-agent path (¢;,,t t .., ti;,,.) of agent A it must hold that

Uikt

P42

ij+h) < depth(tij+h+1)’ (9)

i1
depth(t

because depth(t;, ,) > depth(t;, ) for two tasks belonging to the same agent
would imply that (t;,,,,,,%,,,) € A; and, therefore, ¢;,,, <*t ) cannot
occur as part of A’s plan, because it would create a cycle.

Equation § and [ together imply that

Tj4ht1

1. traversing from one task ¢ to another task ¢’ via an inter-agent constraint in
¢ strictly increases the depth: depth(t) < depth(t'), and

2. traversing from one task ¢ to another task ¢’ via an intra-agent constraint in
¢ does not decrease the depth: depth(t) < depth(t').

This implies that since there is at least one inter-agent constraint involved, the
depth of the first task ¢;, occurring in ¢ should be strictly less than the depth of
the last task in ¢. But that implies depth(t;,) < depth(t;,): contradiction. Hence,
such a cycle ¢ cannot exist and the complex task 7’ is plan coordinated. O
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Abstract. Failures are unavoidable in many circumstances. For exam-
ple, an agent may fail at some point to perform a task in a dynamic
environment. Robust systems typically have mechanisms to handle such
failures. Temporal logic is a widely used representation language for rea-
soning about the behaviour of systems, although dealing with failures
is not part of the language. In this paper, it is investigated how inter-
val temporal logic can be extended with an operator describing failure.
This logic has a close relationship to exception handling mechanisms in
programming languages, which provides an elegant mechanism for mod-
elling and handling failures. The approach is motivated from the context
of specification of systems that have to operate in highly dynamic envi-
ronments. A case study of the formal modelling and verification of the
treatment of diabetes mellitus type 2 illustrates the practical usefulness
of the approach.

1 Introduction

For agents that do not have a complete model of their environment or lack
certain control over it, it is unavoidable that failures to perform tasks occur.
Many systems require some type of robustness against these failures, e.g., robots
need to make sure that their task will be accomplished, aviation systems need to
make sure that the plane does not crash, etc. In agent literature, the semantics of
failures have been investigated in a logical sense [11] and have been incorporated
in agent programming languages []. Similarly, in software engineering, the use
of exceptions as first-class citizens in programming languages is wide-spread.
Besides the internal aspects of a system, i.e., a program state or mental state
of an agent, an important aspect of systems is behaviour, i.e., how it acts and
reacts in a dynamic environment. To reason about this behaviour, mechanisms
that go beyond the scope of classical predicate logic are employed. Since the late
seventies, several temporal logics have been proposed to deal with specification
and verification of hardware and software systems. In artificial intelligence, many
of the logics dealing with actions usually contain some temporal component. In
systems where failures heavily determine the final behaviour, modelling of this
behaviour is more natural when failures are part of the modelling language.
Moreover, we will argue that, since temporal logical formulas can be used to
describe behaviour, the failure of a behaviour is best described using a sentential
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operator, i.e., as a property of a (temporal) logical sentence. This contrasts with
other approaches, where failure is seen as a property of primitive events and
corresponds to the major contribution of this paper.

In the next section, we will first consider some motivating examples for rea-
soning about failure and explain why a simple solution is often unsatisfactory.
Then, in Section [3 this is related to exception handling mechanisms that are
found in programming languages. In Section ] preliminaries concerning Interval
Temporal Logic (ITL) are introduced, which is subsequently extended with fail-
ures in Section Bl In Section [ we apply this to to a medical guideline that deals
with the treatment of diabetes mellitus type 2 and study the formalisation and
its properties. In Section[7 related work of modelling failure in Al is discussed.
Finally, in Section B we discuss the results and future work.

2 DMotivating Examples

2.1 Robbing a Bank

A well-known logic to model agents is BDI logic as proposed by Rao & Georgeff
[I1]. Tt contains modal operators BEL, GOAL, and INTEND which should be
interpreted as the believe, goal and intention of the agent. Moreover, amongst
other operators, it contains an operator failed to describe that an event has
(just) failed and temporal operators such as O (always) and ¢ (eventually). The
introduction of a failed operator is motivated by Rao & Georgeff by the fact
that failure may force an agent to replan or revise her plans. They give the
following example:

(...) the consequence of a thief successfully robbing a bank is quite dif-
ferent from a thief failing in his attempt to rob the bank, which is again
different from the thief not attempting to rob the bank.

For example, it is possible to model an agent that believes that if he fails to rob
the bank, then he will go to jail:

BEL O(failed(rob bank) — (locked up)

which allows the agent to revise its plan after the robbery accordingly. Robbing a
bank, however, is not an easy task for any intelligent agent (over 50 percent of the
bank robbers are arrested in the U). For example, in case of an armed robbery,
it involves threatening the people inside the bank at all times, demanding money
and securing a getaway. Failure to accomplish any of the subtasks will result in
failure to complete the overall task. Note that failure to demand money will
in some sense result in failure to rob the bank; however, it is clear that this
does not necessarily lead to the consequence of going to jail. There is a need to
model the different ‘types’ of failure associated with a goal that the agent tries to

!http://www.fbi.gov/ucr/cius 02/html/web/specialreport/05-SRbankrobbery.
html
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accomplish. More importantly, the predicate failed describes failure of events;
however, ‘robbing a bank’ is not a primitive event here, but rather a complex
temporal description of several events to accomplish the overall task. Clearly, as
failed is a predicate on events, it cannot be used in a temporal formula. The
only possibility is to define the event rob bank in terms of more primitive events.
The downside of this approach is that there is no mechanism to infer that failure
of some of the mandatory sub-tasks will result in failure of the overall task.
While it might be possible to specify this, as rob bank is a complex temporal
description of events, a description of its failure is, most likely, complex as well.
In the next subsection, this is illustrated with some temporal patterns that may
occur in medical management.

2.2 Medical Management

Suppose we are modelling an agent, typically a physician, who treats a patient.
As almost all drugs may result in side-effects, it is of great importance that the
agent does not over-medicate the patient. Therefore, if the disease is not directly
life-threatening, management of a disease should start with a non-invasive treat-
ment where one expects as little side-effects as possible. It is not always possible
to measure beforehand if the effects of the treatment will be desirable, as this
could require a test that is considered to be too invasive or because it is not
known which physiological variable should be measured. As a result, a failure to
treat the patient may occur, which means that subsequent actions are required.

Medical treatments are performed in sequence or in parallel. Sequential ac-
tions are typically done in case an earlier treatment fails or when a certain
physiological state should be reached before a subsequent state can be effective.
In such a case, failure to perform a treatment will result in a failure of the whole
protocol, as it will block the successful administering of subsequent treatments.
Parallel treatments occur for example when multiple drugs are prescribed at
the same time. If the effects of these drugs are combined, then the combination
of drugs will fail if one of the individual actions fails. If failures are not han-
dled appropriately, it may lead to medical mismanagement, e.g., in case drugs
become ineffective due to failure of other treatment components, continuing to
administer these drugs is considered bad medical practice. As a consequence,
failure handling plays an important role in maintaining the quality of medical
management.

This idea of an implicit mechanism that “propagates” the failures throughout
the management of a disease leads to the idea that such failures could be seen
as exceptions that need to be handled appropriately. This idea is pursued in the
next section.

3 Exception Handling

The idea of handling failures while performing a task is well-known in the context
of programming languages by means of exception handling mechanisms. An ex-
ception is a failure of an operation that cannot be resolved by the operation itself



Actions with Failures in Interval Temporal Logic 25

[14]. Exception handling mechanisms provides a way for a program to deal with
them. Many programming languages (C++, Ada, Java, etc) now incorporate
such extensive exception mechanism in order to facilitate robust applications.
Typically, such a mechanism consists of two parts. There is a mechanism to
throw an exception, which sends a signal that an exception has occurred. Sec-
ond, catching an exception transfers control to the exception handler that defines
the response that the program takes when the exception occurs. Looking at it
slightly differently, one could say that the program determines the plan that is
being executed, while the exception handler is able to revise this plan in case an
failure occurs.

For the purpose of this paper, it is useful to summarise the semantics of
exception handling mechanisms. A formal semantic model of exceptions in Java
based on denotational semantics [I] as well as operational semantics [10] exists.
The complete mathematical description of these mechanisms is too extensive
to be discussed here, as only a small part of the semantics deals with failures.
Instead, we give a more general description of the operational semantics of the
exception mechanism. A state, here denoted by o, consists of the heap, values
of the local variables, and optionally an exception. Evaluation rules describe
how statements change the state, typically in the form og = o, which denotes
that the execution of statement s starting in state oy can terminate in state
o1. For exception handling, the state is extended with an exception, i.e., we
then deal with assertions oy — of which means that the execution of s in
0p can terminate in o; throwing an exception denoted by the superscript 4.
The operational semantics is then also extended with these assertions, e.g., for
sequential composition this yields the following two rules depending on whether
or not a failure has occurred in the first statement:

51 ED) S1
I'Fog—o0o1 I'ko = o9 I'tog — of
S$1;52 S$1382
' oy —= o9 I' oy ———= of

where I" defines the context of the rule. Logically speaking, what we see here is
that failures are propagated through the semantics of each programming struc-
ture. We will show how to incorporate this idea in terms of temporal logic in the
next two sections.

4 Interval Temporal Logic

In this section, we define the necessary preliminaries of interval temporal logic
(ITL) [8], which acts as the basis for our approach and can be considered a rich
framework for specifying many systems. As it is quite a rich system, it can be
considered a rather heavy machinery for solving the problems that were discussed
in the previous section. However, it shows that the incorporation of failures in
the logic can be done for a wide range of logics, such as the more common linear
temporal logic (LTL), a sub-logic of ITL.

2 Abstracting from the different types of exceptions.
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4.1 Syntax

For the purpose of this paper, we consider the propositional part of ITL. The
main difference with standard temporal logic is that interval temporal logic deals
with intervals rather than time points, which makes it suitable for logic-based
modular reasoning involving periods of time. In this logic there are three primary
temporal constructs:

— skip: the interval is a unit interval of length 1

— ;1: chop the interval into two parts, such that ¢ holds in the first part and
1 holds in the second part

— ¢*: decompose the interval into a (possibly infinite) number of finite intervals
in which ¢ holds.

Given a non-empty set of propositional variables P, the full syntax can then be
given in BNF notation as follows:
p—p|-eleAe|skip|pip]|e"

with p € P. Let true be defined as p V —p and false as —true, for some p € P.
Then, the following additional linear temporal operators are defined that are
used in the remainder of this paper:

op £ skip; o in the next state ¢
%) L2 o if there is a next state, then in the next state ¢
last £ efalse this is the last state of the interval
finite £ —(true;false) the interval is finite
Qv £ finite; ¢ eventually ¢
2
Op = =09 always ¢

Other propositional connectives are defined as usual, i.e., o V¢ 2 =(=p A =),
@ — 1 2 =p Vi, and if a then ¢ else ¥ £ (a A @) V (ma A).

4.2 Semantics

Models of this logic are (possibly infinite) sequences of states, denoted by o, i.e.,
o = 09,01, .... We write |o| to denote one less than the length of the sequence
(as usual in ITL), which is either oo if there are infinite number of states and
otherwise some natural number n. If 0 = 00,...,0n,...,0m, ..., then o™
denotes the subsequence o,,...,0,, of 0. Let each o; be a function of type
P — {L, T}, that denotes whether an atomic proposition is either true (T) or
false (L). The formal semantics is then as follows:

ckp o) =T
ocE-p ol
cEeANY S oEpando =¥
olEskip < lol=1
cEpY S lol=ccAoEpor
there exists n < |o| with ¢07 = ¢ and o™l =4
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cE* & |o=0
or there exists 0 =ng < ny < ... < Ny, < |0
with glnini+il Epforall0<i<m
and o—[”mv|‘7” ): %)
or there exists infinite many 0 =ng <n; < ...
with glmmit1l = o for all 0 < i

Sequences of, for example medical, actions can now be modelled quite easily,
e.g., action a after b is modelled as a;b, provided that a and b may overlap.
Repetition of this patterns could be modelled as, for example, (a;0b)*. If, on
the other hand, ¢ must be applied for a longer period of time, this may be
described as Oa;b. What will happen when in this latter case fail(b) holds at
some point: does this constitute a failure of the complete sequence? Presumably
not, as b does not necessarily have to hold by the given semantics. What if failure
occurs at the last time that a holds? Then it seems to be the case that the whole
sequence has failed. We will formalise this intuition in the next section.

5 Interval Temporal Action Logic with Failure

In this section, we extend the logic of ITL with actions and introduce an operator
that denotes failure of the formula. We will refer to this extended logic as ITALF.

5.1 Syntax and Semantics

Let A be a set of actions, and P a set of atomic propositions. Models o we will
be working with consists of a (possible infinite) sequence of states oy, . ... Each
o; is defined as (m;, ), where 7; is a function P — {T, L} and «; a function
A — {inactive, active, failed}. When discussing a o', we will write o and 7, such
that o} = (o}, 7}). Let the language be extended with actions and an operator
fail. All semantics given by the language of ITL remains the same. Entailment
of ITL will be denoted as f=rry, from now on and | will be understood as
entailment for ITALF.

Actions are interpreted as activations, hence, negations of actions are under-
stood as actions that are not active (i.e., inactive or failed). This is formalised
as follows:

o a < ap(a) = active

For the definition of failure, we need to consider models where we abstract from
the difference between inactive and activation, but instead only consider the
difference between failures and non-failures. In order to accomplish this, we use
the following models, that we denote as failmodel(o):

Definition 1. For all o, failmodel(o) = o’ if:
= o] = |o'|
— for all i such that 0 <i < |o|:
o forallp e P: mi(p) = 7i(p)
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o for all a € A: if a;(a) = failed then o (a) = failed,
otherwise o (a) = active

So failmodel(o) describes o where non-failures (in particular inactive actions) are
interpreted as activations. We can then consider failure as a type of negation in
the definition of fail, as follows:

o = fail p & o [~ ¢ and failmodel(o) £~ ¢

To understand this definition, consider ¢ as a formula that implies that certain
propositions and actions are true or false at certain moments in time, even
though for some formulas, there is a choice to be made on which point in time.
For atomic propositions, the definition is clear and is equivalent to the negation
as failmodel(c) does not evaluate propositions differently than o. For actions, the
situation is more complicated. First, if an action a is implied by ¢ at a certain
moment in time, then ¢ fails if the action fails on that point in time, which
is exactly given looking at —a on failmodel(c). This seems sufficient; however,
consider the converse, i.e., that ¢ implies —a at a certain point in time. Then, the
formula fails if in fact the action is activated at that point, which corresponds
to the first part of the definition. Note that by just looking at failmodel(o), we
can only derive that it must be active or inactive, however, a failure not to do
an action does not correspond to this idea.

5.2 Logical Characterisation

As already mentioned in the previous section, with respect to atomic propositions
p, it follows:
failp = —p

i.e., failure to accomplish p simply means it is not true. So, the formalisation
considers failure as a kind of negation. Typically, in the formalisation of medical
management, we are interested in formulas such as:

fail (p — a)

i.e., in situation described by p, the action a must be activated. According to
the semantics, this is equivalent to p A faila, i.e., if the implication fails, then
in the situation described by p, the action a indeed fails. As argued in the
previous subsection, failure not to do an action a, i.e., fail —~a means that a is

1. fail(p) — fail(¢ A ?)

2. fail(p V ¥) — fail(p) V fail(e)

3. fail(p) — fail(y; 1), where ¢ is objective
4. fail(p) — fail(¢"), where ¢ is objective

Fig. 1. Propagation of failures in ITALF, where objective formulas are formulas that
do not contain any temporal operators
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fail o

© % (U

t t+1t+4+2

Fig. 2. Sketch of ¢ orelse,,; ¥ in case of failure of a;

in fact done. Conversely —fail ¢ means that a is either active or inactive. Hence
fail ~p # —fail p.

In general, the definition of fail is such as to propagate to larger formulas.
This is summarised in Fig. [l What is interesting is that the calculus rules of
the operational semantics of an imperative programming language described in
Section Bl can now be understood in terms of failure inside the logic. For example,
for sequential composition, the following calculus rule is sound with respect to
the semantics:

I+ fail(p)

I+ fail(p; )

where ¢ is objective, which follow directly from item (3) of Fig. [l and modus
ponens.
In order to describe acting on the basis of failure, we define an additional
operator:
@ orelsey ¢ £ ¢ A —last; o (failstate, A o))

where
failstatey = \/ fail a; A /\ —a;
a;€EA a;€EA

i.e., i holds forever, or, an action fails at some point after which 1 holds. We
assume that ¢ is true in at least a unit interval, which prevents failures to occur
right away. In Fig.[2 a model where a failure occurs and is handled is sketched.
The definition of the failstate ensures that during this time no action can be
active, and thus no additional failures may occur. In some sense, this operator
may be read as an exception handling mechanism where failures of ‘type’ A are
caught in the execution of ¢, such that 1 is executed when this occurs.

Finally, consider the robbing example of Subsection Il The ITALF logic
allows one to reason elegantly about, for example the temporal description
fail(Othreaten; flee). It is cumbersome to derive an equivalent formula in ITL,
which has to describe that in case the fleeing fails or that threatening fails before
fleeing, the robbing fails. It is not difficult to see however, that it is possible to
write down such formula. In fact, this is true for arbitrary formulas of the ITALF
language and is discussed next.

5.3 Reduction to ITL

In this subsection, we will show how ITALF can be translated to I'TL. We thereby
give means to exploit the proof techniques that were developed for ITL. To
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accomplish a reduction to ITL, additional propositional variables are required.
We assume we have an infinite number of propositional variables such that we
have a (unique) fresh proposition f,, standing for failure, for each a € A.

Definition 2. Given a formula ¢, define () as ¢ where every occurrence of
some action a € A has been replaced with —f,.

Definition 3. The reduction of a formula ¢ is defined on the structure of ¢ as
follows:

reduce(p) =p

reduce(a) =a

reduce(—p) = —reduce(yp)

reduce(p A ) = reduce(p) A reduce(v))
reduce(skip) = skip

reduce(p; ) = reduce(yp); reduce(1))
reduce(p™) = reduce(p)*

reduce(fail ) = —reduce(p) N —~P(reduce(p))

Below, we refer to reduct(p) as the ITALF formula that is found by applying
the definition exhaustively from left to right. The main result of this subsection
which provides the connection between ITL and ITALF follows.

Definition 4. Given a ITALF formula ¢, intended meaning of the failure propo-
sitions is defined as follows:

I(‘P) = D(a() — 2 fag N Nag — _‘fan)

where {ag,...,an} C actions(p), such that actions(p) is defined as the set of
those a € A that is a sub-formula of .

Note that Z(ip) is finitely bounded by actions in a formula, which is important
as the total number of actions in the language may be infinite.
Then, we have the following result:

Theorem 1. = ¢ iff Z(v) ErrL reduct(y)
The proof of this theorem can be found in Appendix [Al

5.4 Robbing the Bank Revisited

As an illustration of the theory introduced above, we revisit the example dis-
cussed in Section [Zl Suppose we would model robbing the bank as follows:

rob bank £ ((Jthreaten A {collect money A finite ;get awa
y g y

i.e., personnel is threatened for a finite amount of time, money is collected, after
which it is necessary to get away. Accepting the semantics of failures as presented
in this paper, we can now directly talk about failure of the logical sentence above,
possibly in combination with ‘C]—fail collect money’, as this action cannot fail
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— Step 1: diet

— Step 2: if Quetelet Index (QI) < 24, prescribe a sulfonylurea drug; otherwise,
prescribe a biguanide drug

— Step 3: combine a sulfonylurea drug and biguanide (replace one of these by a
a-glucosidase inhibitor if side-effects occur)

— Step 4: insulin

Fig. 3. Tiny fragment of a clinical guideline on the management of diabetes mellitus
type 2. If one of the steps k = 1,2,3 is ineffective (fails), the management moves to
step k + 1.

in the sense discussed in Section 2] i.e., failure to collect money does not lead
to an arrest.

To illustrate what it then means to fail to rob the bank in the language of
ITL, one can take the reduction of the sentence (we will omit the definition of
failure propositions defined by 7 in the formulas below, i.e., we will only consider
faithful models, see Appendix [A]) resulting in:

- A _‘((D_‘fthreaten A <>_‘fcollect money A ﬁnite); fget away)

Now supposing that the money is collected, this can be further simplified using
the semantics of the ITL operators, finally yielding models for which holds:

Vn <|o|: (Ji: (0 <i<nand 0; = fenreaten) OF O = fget avay)

i.e., either in the first part the threatening fails or, otherwise, the robber fails
to get away, which is arguably the intended meaning of failing to rob a bank in
this example.

This, however, is not easily specified in future-time temporal logic. While
we can obviously express this with the negated chop formula above, negated
chop formulas are difficult to interpret. Using a more standard linear temporal
operator, until (see e.g., [I5]), the simplified formula can be rephrased as:

_‘((_‘fthreaten) until (_‘fget away A\ _‘fthreaten))

which is possibly slightly more understandable. Nevertheless, if the original tem-
poral specification is more complicated than the rather simple example that we
provide here, modelling failing behaviour quickly becomes a difficult task.

6 Application to a Medical Guideline

6.1 Introduction

As a more elaborate application of failures, we consider clinical guidelines, which
are extensive documents advising clinicians appropriate management of disease.
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The guideline shown in Fig. [3 is part of the guideline for general practitioners
for the treatment of diabetes mellitus type 2 (DM2) [12], which aims at control-
ling the level of glucose in the blood. The knowledge in this fragment concerns
information about order and time of treatment (e.g., sulfonylurea in step 2),
about patients and their environment (e.g., Quetelet index lower than or equal
to 27), and finally which drugs are to be administered to the patient (e.g., a
sulfonylurea drug).

In order to reason about the quality of guidelines, we require additional med-
ical knowledge, which is based on a methodology for checking quality medical
guidelines proposed in [6]. While some of the below formalisation is also dis-
cussed in that paper, here, the guideline is formalised in temporal logic, rather
than a specialised guideline representation language. In particular, we focus on
the issue of failure of treatments.

6.2 Modelling of Medical Knowledge

In order to represent the medical knowledge, a specific language is defined in this
section. We restrict ourselves to the knowledge which concerns itself with the
primary aim of a guideline, which is to have a certain positive effect on a patient.
To establish that this is indeed the case, knowledge concerning the physiology of
a patient is required. This is here formalised as a causal model describing effects
of the treatment.

We are interested in the prescription of drugs, taking into account their mode
of action. Abstracting from the dynamics of their pharmacokinetics, this can be
formalised in logic as follows:

(dAT) = o(miA---Amy) (1)

where d is the name of a drug, r is a (possibly negative or empty) requirement
for the drug to take effect, and my is a mode of action, such as decrease of release
of glucose from the liver, which holds at all future times.

Note that we assume that drugs are applied for an instant, here formalised
as ‘next’. This is reasonable if we think of the time instants as unspecified peri-
ods of time where certain propositions hold. Synergistic effects and interactions
amongst drugs can also be formalised along those lines, as required by the guide-
line under consideration. This can be done either by combining their joint mode
of action, by replacing d in the formula above by a conjunction of drugs, or
by reasoning about modes of actions. As we do not require this feature for the
clinical guideline considered in this chapter, we will not go into details.

The modes of action my can be combined, together with an intention n
(achieving normoglycaemia, i.e., normal blood glucose levels, for example), a
particular patient condition c, and requirements r; for the modes of action to be
effective:

(omi, Ao~ Nomy, ATiA---ATpAc) —on (2)

For example, if the mode describes that there is a stimulus to secrete more insulin
and the requirement that sufficient capacity to provide this insulin is fulfilled,
then the amount of glucose in the blood will decrease.
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(1) insulin —
o (uptake(liver, glucose) = up N uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up — release(liver, glucose) = down

(3) SU A —capacity(b-cells, insulin) = exhausted) — o secretion(b-cells, insulin) = up

(4) BG — o release(liver, glucose) = down

(5) diet A capacity(b-cells, insulin) = normal — o Condition(normoglycaemia)

(6) (o secretion(b-cells, insulin) = up A capacity(b-cells, insulin) = subnormal A
QI < 27 A Condition(hyperglycaemia)) — o Condition(normoglycaemia)

(7) (o release(liver, glucose) = down A capacity(b-cells, insulin) = subnormal A
QI > 27 A Condition(hyperglycaemia)) — o Condition(normoglycaemia)

(8) ((o release(liver, glucose) = down V o uptake(peripheral-tissues, glucose) = up) A
capacity(b-cells, insulin) = nearly-ezhausted N o secretion(b-cells, insulin) =
up A\
Condition(hyperglycaemia)) — o Condition(normoglycaemia)

(9) (o uptake(liver, glucose) = up A o uptake(peripheral-tissues, glucose) = up A
capacity(b-cells, insulin) = exhausted A Condition (hyperglycaemia)) —
o (Condition(normoglycaemia) V Condition(hypoglycaemia))

(10) (Condition(normoglycaemia) ® Condition(hypoglycaemia) @

Condition(hyperglycaemia)) A = (Condition(normoglycaemia) A
Condition(hypoglycaemia) A Condition(hyperglycaemia))

Fig. 4. Background knowledge Bpyo of diabetes mellitus type 2. An action « holds
iff drug « is being administered at that moment in time. The & operator denotes the
exclusive OR operator.

The fragment of DM2 is relatively simple, however, diabetes is in fact a com-
plicated disease: various metabolic control mechanisms are deranged and many
different organ systems may be affected by the disorder. Pathophysiologically,
there are two main phenomena, namely, insufficient secretion of the hormone
insulin due to a decreased production of insulin by B cells in the Langerhans
islets of the pancreas, and insulin resistance in liver, muscle and fat tissue. Parts
of these mechanisms are described in more detail in [6]. These physiological
mechanisms were modelled in temporal logic, which is described in Fig. @l

6.3 Modelling of the Guideline

In this paper, we mainly focus on the modelling of the guideline fragment of
Fig. [Bl The possible actions that can be performed is the set A consisting of
{diet, SU, BG, insulin}. Each treatment A is a subset of A. Treatment changes if
a treatment has failed, which can be conveniently be formalised in ITALF. The
main structure of the guideline, denoted by M, is then:

O treatment = {diet}
orelse gicy (if QI <27 then (Otreatment = {SU})
else (Otreatment = {BG})
orelse(gy pgy (Otreatment = {SU, BG}
orelse gy g} Htreatment = {insulin}))
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where each term treatment = A is an abbreviation for:
N\ {alaecA}U{-a ~fail a|ac (A\A)})

i.e., the actions in A are activated, and all other actions are inactive (i.e., false
and have not failed). This formalisation includes the handling of the failures in
some sense, however, we also need to define in which cases these failures occur.
One can think of this as ‘throwing’ the exceptions during the management of
the disease. Define an abbreviation for this as follows:

fails p £ o fail

The guideline does not specify what amount of time is allowed to pass before it
can be concluded that the treatment is not effective. Clearly, if a failure occurs
immediately, then patients will all receive insulin treatment. Here, we assume the
property of the background knowledge that relevant effects with respect to the
condition of the patient are known in the next state. Hence, decisions whether
the treatment fails can be taken after one step in the execution. These failure
axioms are denoted as F and formalised as follows:

O (a; — o ((ay A Condition(hyperglycaemia)) < fails a;))

for all o € A.

6.4 Verification

Several tools for ITL have been developed, such as the interpreter Tempura [9]
and support for ITL in the theorem prover PVS [3]. For our experiments, we
have used the KIV system, an interactive theorem prover, designed for program
verification and capable of reasoning about algebraic specifications using classi-
cal, dynamic and (interval) temporal logic. The main proof strategy for temporal
logic is symbolic execution with induction. Symbolic execution unwinds formu-
las, e.g.,
e epAAolep

and induction is used to proof reason about recurring temporal states. Its theo-
retical background is described extensively in [2]. Below, we will write sequents
I' = A to denote Z(I'UA) Fxrv reduce(A\ I' — \/ A), where Fgry denotes the de-
ductibility relation defined by the sound (propositional and temporal) inference
rules implemented in KIV.

In the specification of properties presented, we made use of algebraic speci-
fication to specify the variables in the background knowledge, though it could
be translated to propositional logic if necessary. Furthermore, we made use of
some additional variables to represent each treatment (e.g., ‘treatmentdiet’ de-
fined as ‘treatment = {diet}’), and both failure-states. In practice, this makes
the proofs more manageable. The relationship between the actions and these ad-
ditional variables are defined appropriately in the system, i.e., all the additional
propositional variables could be replaced by actions and failure of actions.
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Example 1: Diet may be applied indefinitely. The first example is the
following property. Let Bpaso be the background knowledge, M be the guideline
given in Section [6.3] and F failure axioms defined in Section [63] then:

Bpaa, M, F, O capacity(b-cells, insulin) = normal
F O e Condition(normoglycaemia)

i.e., in case the patient has B cells with sufficient capacity to produce insulin,
then diet is sufficient for lowering the level of glucose in the blood. As only the
failure of diet is relevant in the proof, M can be weakened to:

(Otreatmentdiet) A — last; faiet

Symbolic execution, in the context of the background knowledge, leads to the
situation where:

(Otreatmentdiet; faier) A Condition(normoglycaemia)

Since we have Condition(normoglycaemia), it can be derived that diet does not
fail, thus in the next step it can be derived that the condition is still normogly-
caemia, which is exactly the same situation as we had before. By induction, we
can then reason that this will always be the case. A more detailed proof can be
found in Appendix

Example 2: Reasoning about the patient in case of failure. Guidelines
are not applied blindly by physicians, as the physician has to make a decision for
an individual patient on the basis of all known information. As a consequence, a
physician might be interested in reasons of failure. Suppose we have an arbitrary
patient, then we can prove the following:

Bpaa, M, F F fail(d diet) — O capacity(b-cells, insulin) # normal

i.e., if always applying diet fails, then apparently the patient has non-normal ca-
pacity of its B cells at a certain moment in time. M is needed here to derive that
in case diet stops, a failure has occurred rather than a non-failing termination
of diet. Proving this in KIV is similar as the previous example.

Example 3: Level of sugar in the blood will decrease. As a third exam-
ple, we use one of the quality criteria for the diabetes guideline from [6]. This
property says that the guideline reaches its intention, namely, the level of sugar
in the blood will be lowered for any patient group. This property is formalised
as follows:

Bparz, M, F,O (capacity(b-cells, insulin) = capacity(b-cells, insulin)”) A
O QI = QI” + ¢ — Condition(hyperglycaemia)

where V' denotes the value of the variable V' in the next step. Our proof strategy
consisted of splitting the patient group into groups which are cured by the same
treatment, e.g., similar to the previous example, when the capacity is normal,
then diet is sufficient.
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Consider the example where the capacity of insulin in the B cells is nearly-
exhausted. KIV derives from the failure axioms that:

O (i — o (o < 0 (may A fo,)))

as we may assume that [0 — Condition(hyperglycaemia), because the negation
of this formula immediately proves the property. Furthermore, reasoning with
the background knowledge, we can derive that proving ¢ (SUA BG) is sufficient
to prove this property, because for this patient group a treatment consisting
of SU and BG is sufficient to conclude Condition(normoglycaemia). It is then
easy to see how to complete this proof as the failure axioms specify that all
the treatments will fail (after two steps), hence symbolic execution shows that
eventually the third step will be activated.

7 Related Work

Failure has received little attention in formal theories of action. Of course, reason-
ing of actions had always taken into account the notion of failure, as illustrated
by the logic of Rao & Georgeff, but it is assumed that failure can be added in a
relatively straightforward manner. One notable example of where the notion of
failure is part of both the syntax and semantics is the approach of Giunchiglia
et al. [4]. Tts primitive syntactic structure is:

iffail o then g else ~

And from this, abbreviations are defined such that it allows one to reason con-
veniently about failures. The semantics is defined in terms of behaviours where
it said that some behaviours have failed, while others are successful. Behaviours
are defined technically in terms of linear models.

What this language lacks is the notion of time, as behaviours are simply
considered a sequence of actions which either fail or do not fail. For medical
management, this poses a problem, as failure may occur after a longer period of
time. This means that the notion of failure needs a richer structure, so that it is
possible to interact between time and failure.

Another important shortcoming for using this language in the context of med-
ical management is that failures are considered properties of a behaviour. As said
before, in medical management, actions are often performed in parallel, for ex-
ample, the administering of a combination of drugs. In such cases, some drugs
may fail to reach the required effects, while others may be successful. Hence, in
the language decisions need to be made on, not only if a failure has occurred,
but also what action has failed. We believe we have clearly demonstrated this in
the previous section.

8 Discussion and Conclusions

In this paper, we have introduced semantics of failures in interval temporal logic
inspired by the exception mechanism that can be found in many programming
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languages. The practical usefulness of our approach has been validated using
medical guidelines by showing the verification of a fragment of diabetes melli-
tus type 2 which was formalised elegantly using this logic. However, we think
that the results could be used in a much wider context. First, the reasoning
about failures can have its applications in agent-based systems. Failures to per-
form tasks are an important aspect for decision making by agents, so having a
reasonably rich language for modelling these failures seems justified. Second, in
the context of program refinement, the process of (high-level) specifications to
implementations of systems, exceptions are introduced at some point to model
failure of components. The results of this paper makes it possible to abstract of
concrete programming construct to describe how control of flow should change
in case exceptions occur.

The logic that is proposed here can be seen as a three-valued logic, i.e., formu-
las are true, false, or failed. Some work has been done to link three-valued logics
idea to temporal reasoning [7], which is based on Kleen’s three-valued calcu-
lus that deals with ‘unknown’ values. This results in different logical properties
compared to ITALF, e.g., unknown values propagate over a disjunctions, while
failures do not.

Compared to [6], the verification of the investigated properties required sig-
nificantly less effort. This is mainly due to the fact that in [6] the guideline was
formalised in the guideline representation language Asbru [I3], which yields over-
head in complexity due to a complicated semantics. On the other hand, many of
the steps that are required in ITALF were done manually, as it is not obvious to
predict the correct next step in the proof. For example, it is important during
verification to ‘weaken’ the irrelevant parts of the guideline, making the symbolic
execution more efficient. Moreover, failure propositions on the sequent introduce
additional complexity, as the human needs to remember the semantics of these
propositions in order to apply the relevant axioms. These facts combined makes
it interesting to consider more automatic techniques, such as automated theorem
proving or model checking. This will a subject of further research.
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A  Proof of Theorem 1

A helpful semantic notion is faithfulness, which means that the failure proposi-
tions correspond exactly to the failure of the the action it has been introduced
for.

Definition 5. o is called faithful iff for all a € A and all i s.t. 0 < i < |o|
holds «;(a) = failed iff mi(fa) =T.

In the following two lemmas, it is proven that the reduction is found with respect
to those faithful models. In the first lemma, we show that @ acts as failmodel on
the syntactic level, which is then used to prove equivalence of formulas with its
reduction.

Lemma 1. For all faithful o and p:

failmodel(c) = ¢ iff o = ®(p)

Proof. By induction on the structure of . First suppose ¢ = a: (=) suppose
failmodel(o) = a then ap(a) # failed. By faithfulness m;(f,) = L, thus o | = f,.
All steps can be reversed. The rest of the cases follow almost immediately, taking
into account that if the model is faithful, so is every interval within this model,
and vice versa.
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Lemma 2. For all faithful models o it holds that o |= ¢ < reduce(y).

Proof. By induction on the structure of ¢. In this case, the only interested case
is for ¢ = fail(y): (=) o [ fail(y) iff o £ ¢ and failmodel(o) [~ ¢. By LH.
on the first part, it follows that o }= reduce(yp). As o is faithful, it follows that
failmodel(o) is faithful. Therefore failmodel(o) [~ reduce(). Using Lemma [Il we
get o (= P(reduce(yp)). Therefore o = —reduce(p) A —P(reduce(p)). By definition,
o [ reduce(fail(p)). All steps are valid in the other direction as well.

These results do not hold for any model, e.g., it is not for all models the case
that f, — —a. A weak form of faithfulness can be encoded as an ITL formula,
bounded by the number of actions in some formula. The fact it is bounded
by actions in a formula is relevant, because we may have an infinite number
of actions in the language, while each formula has a finite length in standard
temporal logic.

Using Definition Fl we can then proof the main lemma, which characterises
the relation between a formula and its reduction for any model.

Lemma 3. = ¢ iff = Z(p) — reduce(y)

Proof. Without loss of generality, this property can be reformulated as

E - iff Z(p) |= reduce(—yp)

as every formula can be stated as a negation and Z(—¢) = Z(yp). Using the
definition of reduce, and taking negation on both sides, rewrite this to:

d,0 | ¢ iff 3,0 E Z(p) A reduce(p)

(=) Suppose there is some o such that o = ¢. Construct a ¢’ such that 7 (f,) =
T iff a;(a) = failed, for all 0 < i < |o|, actions «a, and all fresh variables f,
introduced in the reduction. Let ¢’ be the same as o in every other respect. As
 does not contain any variables f,, it is clear that then o’ = . As ¢ is faithful
(by construction), it then follows by Lemma [ that ¢’ |= reduce(y). Moreover,
by construction, it follows that o’ = Z ().

(<) Suppose for some o, o = Z(p) A reduce(p). Construct o’ such that for all ¢
such that 0 < i < |o], and all actions a:

— if mi(fo) = T then of(a) = failed
— if m(fa) = L and «;(a) = active then o (a) = active
— if mi(fo) = L and «;(a) # active then o/ (a) = inactive

In all other respects (length, valuation of atomic propositions), o and ¢’ are the
same. We then prove for all i and a € actions(p):

a;(a) = active < o (a) = active

(=) a;(a) = active. Then, by the fact o = Z(¢), we know that m;(f,) = L.
Thus, by definition «f(a) = active. (<) Suppose «;(a) # active. Then either
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o (a) = failed (if m;(fo) = T) or o} (a) = inactive (if m;(f,) = L). In any case, we
conclude: o (a) # active.

As reduce(p) does not contain a fail operator, it cannot distinguish if an action
is inactive or failed. Hence, it follows that o’ = reduce(y). It is easy to see that
o' is faithful, so by Lemma [ it follows that ¢’ = .

Now, Theorem 1 is proved in the following way. By Lemma Bl we know |=
v iff E Z(¢) — reduce(p). Observe that the right side does not contain the
fail operator, hence it cannot distinguish between failures and inactivations.
Therefore, |= Z(¢) — reduce(yp) if all actions are interpreted as propositions.
By doing this, Z(p) — reduce(y) is also an ITL formula. Finally, note that the
semantics of ITL and ITALF coincide for the language of ITL.

B Proof of Example 1

This appendix provides an outline of the proof performed in KIV. The first
steps of the proof consists of simple manipulation of the formulas in order to put
them in a comfortable form for presenting the proof. Note that we implicitly use
axiom (10) of the background knowledge for making sure that normo-, hyper-
, and hypoglycaemia are mutually exclusive. First, recall that the translated
failure axiom for diet is:

O (diet — o ((diet A Condition(hyperglycaemia) < o fail diet))
Reduction of this to an ITL formula yields:
O (diet — o ((diet A Condition(hyperglycaemia) < o (—diet A faiet)))
which, by the use of I', can be written as:
O (diet — (o (diet A Condition(hyperglycaemia)) < o o faiet)) (3)
Second, from the background knowledge, we know that:
O (diet A\ capacity(b-cells, insulin) = normal — o Condition(normoglycaemia))

which, together with the fact that O capacity(b-cells, insulin) = normal, it can
be automatically derived that:

O (diet — o Condition(normoglycaemia)) (4)
Finally, note that the proof obligation can be presented as
e [ Condition(normoglycaemia) (5)

By weakening all the uninteresting parts for proving the property, we finally end
up with the main proof obligation:

O (diet — (o (diet A Condition(hyperglycaemia)) < o o faiet)), Eq.(3)
O (diet — o Condition(normoglycaemia)), Eq.(4)
(O treatmentdiet A — last); o faiet, M

O (treatmentdiet — diet),
F e O Condition(normoglycaemia) Eq.(5)
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Symbolically executing this sequent requires only one possible situation that
needs to be proven:

O (diet — (o (diet A Condition(hyperglycaemia)) < o o faiet)),
O (diet — o Condition(normoglycaemia)),

(O treatmentdiet); o faiet,

O (treatmentdiet — diet),

Condition(normoglycaemia), = o faiet

F O Condition(normoglycaemia)

This sequent represents the situation where diet has been applied in the first
step. From this it was derived that then the condition is normoglycaemia. Using
this fact, the failure axiom is used to derive that = o fg;et, i.e., diet will not fail
in the next step. The rest of the proof consists of the claim that this tempo-
ral situation will remain as it is. So we reason by induction that [J Condition
(normoglycaemia). Abbreviate the sequent above as I' = A: then the sequent is
rewritten to:

O (diet — (o (diet A Condition(hyperglycaemia)) < o o faiet)),

O (diet — o Condition(normoglycaemia)),

(O treatmentdiet); o fgiet,

O (treatmentdiet — diet),

Condition(normoglycaemia), = o faiet,

t =N,N = N"+ 1 until - Condition(normoglycaemia), IND-HYP +

where IND-HYP £t < N — (AI' — \/ A), N a fresh dynamic variable and
t a static variable. The remaining steps consists of symbolically executing this
sequent, which ends up in the same sequent with ¢ = N — 1. Then, the induction
hypothesis can be applied, which finishes the proof.



A Logic for Reasoning about Rational Agents

Wojciech Jamroga and Nils Bulling

Department of Informatics, Clausthal University of Technology, Germany
{wjamroga,bulling}@in.tu-clausthal.de

Abstract. We have recently proposed an extension of alternating-time tempo-
ral logic for reasoning about behavior and abilities of agents under various ra-
tionality assumptions. The logic, called ATLP (“alternating-time temporal logic
with plausibility”’) used abstract, unstructured terms for addressing rationality as-
sumptions. Here, we propose a more complex language of terms that allows to
specify sets of rational strategy profiles in the object language, building upon ex-
isting work on logical characterizations of game-theoretic solution concepts. In
particular, we recall how the notions of Nash equilibrium, subgame-perfect Nash
equilibrium, and Pareto optimality can be characterized with logical formulae and
we show how these can be used within ATLP for reasoning about what rational
agents should achieve. We also prove complexity results for model checking of
ATLP formulae.

1 Introduction

Alternating-time temporal logic (ATL) [2] is a temporal logic that incorporates some
basic game theoretical notions. In [I3]], we extended ATL with a notion of plausibility,
which can be used to model and reason about what agents can plausibly achieve. Our
intuition was to use game-theoretical solution concepts (like Nash equilibrium, Pareto
optimality, dominant strategies etc.) to define what it means to play rationally, and then
to assume it plausible that agents behave in a rational way. Technically, some strategies
(or rather strategy profiles) were assumed plausible in a given model, and one could
reason about what can happen if only the plausible profiles are used.

The formulation of alternating-time temporal logic with plausibility (ATLP) from
was rather abstract, with unstructured terms used to address various rationality as-
sumptions, and their denotation “hard-wired” in the model. In this paper, we propose
to refine the language of terms so that it allows us to specify sets of rational strategy
profiles in the object language. The idea is to build the terms on formulae of ATLI
(ATL with intentions, [21]]), as these can be used to describe sets of strategies and strat-
egy profiles. We build upon existing work on modal logic characterizations of solution
concepts [131213I3TU32/21]. In particular, we recall how the notions of Nash equilib-
rium, subgame-perfect Nash equilibrium, and Pareto optimality can be characterized
with ATLI formulae. Then, we show how these characterizations can be used within
ATLP for reasoning about abilities and behavior of rational agents.

The idea to define some strategies as plausible (or rational) is very much in the spirit
of game theory. There, it is usually assumed that some solution concept is given and
that agents are rational if they behave in accordance with it. Thus, assuming rationality

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 4 008.
(© Springer-Verlag Berlin Heidelberg 2008
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of agents ultimately restricts the strategies that can be played by the agents. There are
two possible points of focus in this context: characterization of rationality (and defining
most appropriate solution concepts) vs. using the solution concepts in order to predict
the outcome in a given game. In our previous paper [15]], we proposed a logic for the
latter task, i.e. for “plugging in” a given rationality criterion, and reasoning about what
can happen according to it. In this paper, we try to bridge the gap, and propose how
logic-based characterizations of rationality (formulated in ATLI) can be used to reason
about the outcome of rational play within the framework of ATLP. The work is still in
preliminary stages, and it certainly has its limitations, but we believe it to be a step in
the right direction.

We begin our presentation with an overview of the logics ATL and ATLP (Section[2)
which can be used to reason about abilities of arbitrary and rational agents, respectively.
In Section B we recall how some rationality criteria can be captured with formulae
of an ATL-like logic. Section [4] contains the novel contribution of this paper. First,
we propose how those ATL-like characterizations of rationality can be used in ATLP
in order to “plug in” rationality assumptions in a flexible way. Then, we discuss the
computational complexity of model checking properties of rational play, both for “pre-
wired” and flexible rationality definitions.

2 Preliminaries

In this section, we summarize two modal logics for reasoning about agents in game-like
scenarios: first, the basic logic of ATL [2]); then, its extension ATLP [13].

2.1 Alternating-Time Temporal Logic

Alternating-time temporal logic (ATL) [2]] enables reasoning about temporal properties
and strategic abilities of agents. Formally, the language of ATL is given as follows.

Definition 1 (Laryz [2]). Let Agt = {1,...,k} be a nonempty finite set of all agents,
and I1I be a set of propositions (with typical element p). We will use symbol a to de-
note a typical agent, and A to denote a typical group of agents from Agt. The logic
LarL(Agt, IT) is defined by the following grammar:

pu=plopleAe [ (A)O¢ [ (D¢ | (AU e

Informally, ((A)) says that agents A have a collective strategy to enforce ¢. ATL for-
mulae include the usual temporal operators: O (“in the next state”), [J (“always from
now on”) and U (strict “until”). Additionally, ¢ (“now or sometime in the future”) can
be defined as Oy = T U . It should be noted that the path quantifiers A, E of compu-
tation tree logic CTL [8] can be expressed in ATL with (0)), ((Agt)), respectively. The
semantics of ATL is defined in so-called concurrent game structures.

Definition 2 (CGS [2]). A concurrent game structure (CGS) is a tuple: M = (Agt, Q,
II, 7, Act,d, o), consisting of: a set Agt = {1,...,k} of agents; set Q) of states;
set II of atomic propositions; valuation of propositions 7 : @ — P(II); set Act
of actions. Function d : Agt x @ — P(Act) indicates the actions available to agent
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a € Agt in state ¢ € Q. We will often write d,(q) instead of d(a, q), and use d(q) to
denote the set d1(q) X - -+ X di(q) of action profiles in state q. Finally, o is a transition
function which maps each state ¢ € Q and action profile @ = (a1, ..., ) € d(q) to
another state ¢ = o(q, o).

A computation or path \ = qoq1 --- € Q7 is an infinite sequence of states such that
there is a transition between each ¢;, ¢;+1.We define A[i] = ¢; to denote the i-th state of
M. Ap denotes all paths in M. The set of all paths starting in ¢ is given by A (q).

Definition 3 (Strategy, outcome [2]). A (memoryless) strategy of agent a is a function
Sa @ Q — Act such that s,(q) € da(qﬂ We denote the set of such functions by 3. A
collective strategy s 4 for team A C Agt specifies an individual strategy for each agent
a € A; the set of A’s collective strategies is given by Xy = ] Ya. The set of all
strategy profiles is given by X = Xj+.

The outcome of strategy s in state q is defined as the set of all paths that may result
from executing sa: out(q,54) = {\ € Ap(q) | Vi € No J& = (a1,...,a5) €
d(\[i]) Va € A (aq = s4(A[i]) A o(A[i], @) = A[i + 1])}, where s% denotes agent a’s
part of the collective strategy s 4.

acA

The semantics of ATL is given by the following clauses:

M,q = p iffp € (q)

M, q = —p iff M, q = ¢

M,g= @Ay iff M,q = pand M, q = 9

M,q | (A) O iff thereis s4 € X4 such that M, \[1] |= ¢ forall A € out(q, s4)

M, q E (A)Op iff there is s4 € X4 such that M, A[i] | ¢ for all A € out(q,s4)
and i € Ny

M,q = (A)pU ) iff there is s4 € X4 such that, for all A € out(q,sa), there is
i € Nog with M, \[i] = ¢, and M, \[j] |E ¢ forall 0 < j < i.

Example 1 (Matching pennies). Consider a variant of the “matching pennies” game,
presented in Figure [TIA. If both players show the heads in ¢g, both win a prize in the
next step; if they both show tails, only player 2 wins. If they show different sides,
nobody wins. Note that, e.g., M1,q0 = {(2))0 —money;, because agent 2 can play
tail all the time, preventing 1 from winning the prize. On the other hand, M1, ¢y |
—((2)) Omoney,: agent 2 has no strategy to guarantee that he will win himself.

Such an analysis of the game is of course correct, yet it appears to be quite coarse.
It seems natural to assume that players prefer winning money over losing it. If we
additionally assume that the players are rational thinkers, it seems plausible that player
1 should always play head, as it keeps the possibility of a win open (while playing tail
guarantees loss). Under this assumption, player 2 has complete control over the outcome
of the game: he can play head too, granting himself and the other agent with the prize,
or respond with tail, in which case both players lose. Note that this kind of analysis

" This is a deviation from the original semantics of ATL [2]], where strategies assign agents’
choices to sequences of states. While the choice between the two types of strategies affects the
semantics of most ATL extensions, both yield equivalent semantics for “pure” ATL .
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Fig. 1. “Matching pennies”: (A) Concurrent game structure M1; both agents can only execute
action wazt in states g1, g2, g3 (we omit the labels from the picture to make it easier to read). (B)
The corresponding normal form game under the assumption that the winners always get the same
amount of money.

corresponds to the game-theoretical notion of dominant strategy: for agent 1, playing
head is strongly dominant in the corresponding normal form game in Figure[TIB, while
both strategies of player 2 are undominated, so they can be in principle considered for
playing.

It is still possible to refine our analysis of the game: note that 2, knowing that 1 ought
to play head and preferring to win money too, should decide to play head himself. This
kind of reasoning corresponds to the notion of iterated undominated strategies. If we
assume that both players do reason this way, then (head, head) is the only rational
strategy profile, and the game should end with both agents winning the prize.

2.2 ATL with Plausibility: Reasoning about Rational Agents

Agents have limited ability to predict the future. However, some lines of action seem
often more sensible or realistic than others. Having defined a rationality criterion, we
obtain means to determine the most plausible plays, and compute their outcome. In [13]],
we proposed an extension of ATL for reasoning about rational agents, which had in
turn been inspired by the work by Van Otterloo and colleagues [3413637]]. We called
the logic ATLP, i.e., “ATL with plausibility’.

Definition 4 (Ly7rp [15]). Let Agt, IT be as before, and {2 be a set of plausibility terms
(with typical element w). The language Larrp(Agt, I1, §2) is defined recursively as:

pu=plopleAe | (A)Op | (ANOe | (A)pU ¢ | Ply | Pho | (set-pl w)ep.

PI restricts the considered strategy profiles to ones that are plausible in the given model.
Ph disregards plausibility assumptions, and refers to all physically available strategies.

2 We observe that our framework is semantically similar to the approach of social
laws [29125133]]. However, we refer to strategy profiles as rational or not, while social laws
define constraints on agents’ individual actions. Also, our motivation is different: in our frame-
work, agents are expected to behave in a specified way because it is rational in some sense;
social laws prescribe behavior sanctioned by social norms and legal regulations.
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(set-pl w) allows to define (or redefine) the set of plausible strategy profiles to the ones
described by plausibility term w (in this sense, it implements revision of plausibility).
With ATLP, we can for example say that P1 {(()) (] (closed A Ph {guard)) O—closed):
“it is plausible that the emergency door will always remain closed, but the guard retains
the physical ability to open them”; or(set-pl wy )Pl {(a)) O—jail, : “suppose that only
playing Nash equilibria is rational; then, agents a can plausibly reach a state where he
is out of prison. To define the semantics of ATLP, we extend CGS to concurrent game
structures with plausibility (CGSP). Apart from an actual plausibility set 7", a CGSP
specifies a plausibility mapping [-] : Q@ — (£2 — P(X)) that maps each term w € (2
to a set of strategy profiles, dependent on the current state.

Definition 5 (CGSP [15])). A concurrent game structure with plausibility (CGSP) is
given by a tuple M = (Agt, Q,II, 7, Act,d, 0,1, $2,[-]) where (Agt, Q, II,w, Act,
d,0) isaCGS, T C X is a set of plausible strategy profiles; (2 is a set of of plausibility
terms, and [-] is a plausibility mapping.

When talking about the outcome of rational/plausible play (e.g., with formula P1({ A))~y),
the strategy profiles that can be used by all the agents are restricted to the ones from 7.
Thus, coalition A can only choose strategies that are substrategies of plausible strategy
profiles. Moreover, the agents in Agt\ A can only respond in a way that yields a plausible
strategy profile.

Definition 6 (Substrategy, outcome [15]). Ler A C B C Agt, and let sg be a col-
lective strategy for B. We use sp[A] to denote the substrategy of sp for agents A, i.e.,
strategy t o such that t% = s, for every a € A. Additionally, for a set of strategy pro-
files P, P(sa) denotes all strategy profiles from P that contain s o as substrategy (i.e.,
P(sa)={s" € P|s[A] = sa})

Let M be a CGSP, A C Agt be a set of agents, ¢ € () be a state, sy € X4 be a
collective strategy of A, and P C X be a set of strategy profiles. The set out(q, sa, P)
contains all paths which may result from agents A executing sa, when only strategy
profiles from P can be played. Formally: out(q,sa,P) = {\ € Ap(q) | Iz €
P(sA)Vi(Ali + 1] = o(A[i], 2(A[i])))}. Furthermore, ¥ 4(P) denotes all profiles of
A consistent with P, i.e., X4(P) = {sa € X4 | It € P s = t[A]}.

Let P C Y4 be a set of strategy profiles. The semantics of ATLP is given by the
satisfaction relation |=p defined as follows:

M,q Epp iffp € w(q)

M,qEp —p iff M,q P ¢

M,qFEp ey iff M,q=ppand M. q =p ¢

M,ql=p (A) O iffthereissg € X a(P) with M, A\[1] Ep pforall A\ € out(q, sa, P)

M, q =p (A)Og iff there is s4 € X 4(P) such that M, \[i] =p ¢ forall A €
out(q, sa, P)and all i € Ny

M,q =p (A) U iff there is s4 € X4 (P) such that, for all A € out(q, 54, P),
there is ¢ € Ny with M, A[i] |=p ¢, and M, \[j] Ep ¢ forall0 < j <

M,qE=pPly iff M,q Fr ¢

M,q Ep Pho iff (M, q) = ¢
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M, q =p (set-pl w)p iff M*¥ g E=p ¢ where the new model M“ is equal to M but
the new set 7 of plausible strategy profiles is set to [w],.

The “absolute” satisfaction relation |= is given by |=5. Note that an ordinary concurrent
game structure (without plausibility) can be interpreted as a CGSP with all strategy
profiles assumed plausible, i.e., with 7 = Y. In this way satisfaction of ATLP formulae
can be extended to ordinary CGS.

Example 2 (Matching pennies ctd.). Suppose that it is plausible to expect that both
agents are rational in the sense that they only play undominated strategies. Let head;
denote the strategy of player ¢ to play head in qp and wait elsewhere (analogously for
tail;). Then, T = {(head,, heads), (heady, tails)}. Under this assumption, agent 2 is
free to grant himself with the prize or to refuse it: P1 (((2)) O money> A((2)) J —moneys).
Still, he cannot choose to win without making the other player win too: P1—((2))
O(money> A —money; ). Likewise, if rationality is defined via iterated undominated
strategies, then we have 7" = {(heady, heads)}, and therefore the outcome of the game
is completely determined: P1 ((§)) ] (—start — money; A money,).

Note that, in order to include both notions of rationality in the model, we can encode
them as denotations of two different plausibility terms — say, Wyndom and wjte,, with
[wundomlqo = {(heady, heads), (head,taily)}, and [witer]q, = {(heads, heads)}.
Let M7 be model M; with plausibility terms and their denotation defined as above.
Then, we have that M7, o |= (set-pl wyndom )PL({(2)) Omoneys A ((2))0 —money,) A
(set-pl wjze )PL{(0) O (—start — money; A money,).

3 How to Capture Rationality

It is easy to see that concurrent game frames (i.e., CGS without propositions and their
valuation) generalize extensive game frames of perfect information (i.e., game trees
without utilitiesﬁ. Thus, it is enough to “emulate” utilities (with e.g. special proposi-
tions) to obtain an embedding of extensive games in CGS. In Section 3.1l we present
the construction proposed to this end in [3I21]. Having game trees represented as ATL
models, we can use strategic formulae to characterize various rationality criteria. How-
ever, such formulae need to refer to strategies explicitly (which is not possible in ATL).
ATLI (“ATL with intentions”) is an extension of ATL that allows to assume that a par-
ticular strategy is intended for execution by a particular agent [21]]. We briefly present
the logic in Section 3.2k ATLI characterizations of several solution concepts (mostly
after [32J21])) are presented in Section[3.3l

3.1 CGS and Extensive Games

In this paper we use game-theoretical concepts to describe the behavior of rational
agents. For this purpose it is necessary to establish a precise correspondence between
game trees and CGS. We only consider game trees in which the set of payoffs is finite.

3 The class of concurrent game frames is strictly more general, as they can include cycles and
simultaneous moves of players, which are absent in game trees.
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Fig. 2. CGS M, for the bargaining game

We recall the construction proposed in [21] (and inspired by [3I32]]). Let U denote the
set of all possible utility values in a game; U will be finite and fixed for any given game.
For each value v € U and agent a € Agt, we introduce a proposition p into our set
I1, and fix p} € 7(q) iff a gets payoff of at least v in ¢. States in the model represent
finite histories in the game. The correspondence between a traditional game tree I’
and a CGS M (I") can be captured as follows. Let I" = (P, A, H, ow, u), where P is a
finite set of players, .4 a set of actions (moves), H a set of finite action sequences (game
histories), and ow(h) defines which player “owns” the next move after history 4. Moves
available at h are: A(h) = {m | h-m € H}, and terminal positions are Term =
{h | A(h) = 0}.Functionu : X xTerm — U assigns agents’ utilities to every terminal
position of the game [26]]. We say that M (I") = (Agt, Q, I, 7, Act, d, o) corresponds
to I iff: (1) Agt = P, (2) @ = H, (3) II, 7 include propositions p} to emulate
utilities for terminal states in the way described above, (4) Act = A U {nop}, (5)
d.(q) = A(q) if a = ow(q) and {nop} otherwise, (6) o(q, nop, ...,m, ...,nop) = qm,
and (7) o(q, nop, nop, ...,nop) = q for ¢ € Term. Note that, for every extensive form
game I, there is a corresponding CGS, but the reverse is not true [21].

Example 3 (Bargaining). Consider bargaining with discount [26/27)]. Two agents, a1
and ag, bargain about how to split goods worth initially wy = 1 EUR, with finite
precision represented by a rounding function » : R — R. After each round without
agreement, the subjective worth of the goods reduces by discount rates 6, (for player
a1) and 6 (for player as). So, after ¢ rounds, the goods are worth (r(6%),7(65)), re-
spectively. Subsequently, a; (if ¢ is even) or ay (if ¢ is odd) makes an offer to split the
goods in proportions (x, 1 — z), and the other player accepts or rejects it. If the offer is
accepted, then a; takes r(z6%), and as gets 7((1—x)8%); otherwise the game continues.
A CGS modeling this game is presented in Figure 21 Nodes represent various states of
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the negotiation process, and arcs show how agents’ moves change the state of the game.
Note that the CGS is the same as the original game tree from [26], save for the presence
of propositions (instead of utility values) and loops added at the terminal nodes.

3.2 ATL with Intentions

ATLI [21] extends ATL with formulae (str,o,) with the intuitive reading: “sup-
pose that player a intends to play according to strategy o, then ¢ holds”. Thus, it
allows to refer to agents’ strategies explicitly via strategic terms o, € Gtr,. We as-
sume that all Gtr, are pairwise disjoint. The set of all strategic terms is denoted by
Ste= Gtr,.

Definition 7 (Larys [21]). The language Lazri(Agt, IT, Str) is defined as follows:
O:=p|—0|0N0| (AYOO | (ANTI0 | (ANOU O | (stryo,)d.

Models of ATLI M = (Agt, Q, I, w, Act,d,0,Z, St, ||-||) extend concurrent game
structures with intention relations 7 C @ x Agt x Act (with ¢Z,« meaning that a
possibly intends to do action « when in ¢). Moreover, strategic terms are interpreted
as strategies according to function [|-|| : &tr — |, Yo such that [loq| € X,
for o, € Gtr,. The set of paths consistent with all agents’ intentions is defined as
AT = {X € Ay | ViTa € d(A[i]) (o(A[i], ) = A[i+1]AVa € Agt A[i]Z,0)}. We say
that strategy s is consistent with A’s intentions if ¢Z,slal(q) forall ¢ € Q,a € A.
The intention-consistent outcome set is defined as: out”(q,s4) = out(q, s4)NAZ. The
semantics of strategic operators in ATLI is given as follows:

a€hgt

M,q = (A)O80 iff there is a collective strategy s 4 consistent with A’s intentions,
such that for every A € out(q, s4), we have that M, A[1] |= 6,

M,q E (A)O0 and M, q = (A)OU": analogous;

M,q = (stro,0)0 iff revise(M,a,||o||),q = 6;

Function revise(M, a, s, ) updates model M by setting a’s intention relation to Z, =
{{q,s4(q)) | ¢ € Q}, so that s, and Z, represent the same mapping in the resulting
model. Note that a “pure” CGS M can be seen as a CGS with the “full” intention rela-
tion Z° = {{q,a,a) | ¢ € Q,a € Agt, o € d,(q)}. Additionally, for A = {a1, ..., a,}
and oy = (01, ...,0,), we define: (straoa)p = (strg,01)...(strg,. 00 )p.

3.3 Temporalized Solution Concepts

Players usually have a big repository of actions they can choose from. Analyzing games
with no additional constraints is often infeasible or at least not very helpful since too
many outcomes are possible. Our main focus is on “reasonable” outcomes that can
only be obtained by ““sensible” strategy profiles. Thus, we need a notion of rationality
to reduce the space of possible moves, and “solve” a game. To this end, game theory
proposes several solution concepts, e.g., Nash equilibrium and Pareto optimality.

Example 4 (Bargaining ctd.). Consider the bargaining game from Example[3l The game
has an immense number of possible outcomes. Worse still, every strategy profile

« | a1 always offers (x,1 — x), and agrees to (y,1 — y) fory > =
s
a2 always offers (x,1 — x), and agrees to (y,1 —y) iffl —y > 1 —=x
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is a Nash equilibrium; an agreement is reached in the first round. Thus, every split
(x,1—x) can be achieved through a Nash equilibrium; it seems that a stronger solution
concept is needed. Indeed, the game has a unique subgame perfect Nash equilibrium.
Because of the finite precision, there is a minimal round 7' with (67 ™) = 0 fori = 1
or ¢ = 2. For simplicity, assume that ¢ = 2 and agent a; is the offerer in T" (i.e., T
is even). Then, the only subgame perfect NE is given by the strategy profile s with

T
k= (1—0b2) 1_1@2‘1522 + (8165) 2 . The goods are split (1,1 — ); the agreement is

reached in the first roun(ﬂ

With temporal logic, it is natural to define outcomes of strategies via properties of re-
sulting paths rather than single states. Let 0 = (o1, ..., 0x). The notion of temporal
T-Nash equilibrium, parametrized with a unary operator 7' = O, 0,0, _U Y, U _,
was proposed in [21]], with the following ATLI specification:

BR; (0) = (stragn ayolAgt \ {a}]) A\ (((a)Tp3) — (stracla])(0)Tp)

/\ BR: (o).

achgt

NE™ (o)

Thus, we have a family of equilibria now: O-Nash equilibrium, [J-Nash equilibrium
etc., each corresponding to a different temporal pattern of utilities. For example, we
may assume that agents “get v” if utility of at least v is guaranteed for every time
moment ([ p}), achieved eventually (Op}), and so on. The correspondence between
Nash equilibria and temporal Nash equilibria for extensive games is captured by the
following proposition.

Proposition 1 ([21])). Let I" be a game with a finite set of utilities. Then M (I"),) =
NE®(0) iff o denotes a Nash equilibrium in I' (i.e., ||o||rr(r) is a NE in rA

It is easy to extend the above characterization to subgame-perfect Nash equilibria:
SPNT (o) = (0)ONE™ (o).

Proposition 2. Let I be a game with a finite set of utilities. Then M(I"), ) = SPN® (o)
iff o denotes a subgame perfect Nash equilibrium in I

Proof. M(I'),0 = SPN? (o) iff M(I'),q = NE® (o) for every q reachable from the
root ) (*). However, I is a tree, so every node is reachable from () in M (I"). So, by
Proposition[I] (*) iff o denotes a Nash equilibrium in every subtree of I".

We can use the above ATLI formulae to express game-theoretical properties of strate-
gies in a straightforward way.

Example 5 (Bargaining ctd.). For the CGS in Figure @l we have M, q0 = NE® (o),
with o interpreted in M as s% (for any = € [0, 1]). Still, Ms, g0 = SPN?(0) if, and
only if, ||o||as, = s".

4 For the standard version of bargaining with discount (with the continuous set of payoffs [0,1]),
cf. [26127]). Restricting the payoffs to a finite set requires to alter the solution slightly [30124].
> The empty history () denotes the root of the game tree.
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We now propose a tentative ATLI characterization of Pareto optimality (based on the
characterization from [32] for strategic game forms):

PO™ (o /\ /\ ({(Agt)) T/\ p') — (strageo)( /\ p' vV \/ \/ TpI

v’ st

’
v > v

That is, the strategy profile denoted by o is Pareto optimal iff, for every achievable
pattern of payoff profiles, either it can be achieved by o, or o obtains a strictly bet-
ter payoff pattern for at least one player. Note that the above formula has exponential
length with respect to the number of payoffs in U. Moreover, it is not obvious that this
characterization is the right one, as it refers in fact to the evolution of “payoff profiles”
(i.e., combinations of payoffs achieved by agents at the same time), and not temporal
patterns of payoff evolution for each agent separately. So, for example, PO () may
hold even if there is a strategy profile ¢’ that makes each agent achieve eventually a
better payoff, as long as not all of them will achieve these better payoffs at the same
moment. Still, the following holds.

Proposition 3. Let I" be a game with a finite set of utilities. Then M (I"), () = PO° (o)
iff l|ol|ar(ry is Pareto optimal in I'.

Proof (sketch). Let M(I"),() = PO®(c). Then, for every payoff profile (v1,...,vs)
reachable in I", we have that either ||o|| obtains at least as good a profildd, or it obtams
an incomparable payoff profile. Thus, ||| is Pareto optimal. The proof for the other
direction is analogous.

Example 6 (Matching pennies ctd.). Let M/’ be our “matching pennies” model M7 with
additional propositions p} = money;. Then, we have M/, qo = PO?(0) iff o denotes
the strategy profile (heads, heads).

4 Flexible Plausibility Specifications

4.1 How to Impose Rationality

So far, we used abstract terms w to describe plausibility sets in the framework of ATLP.
However, such a solution does not realize the idea of “plugging in” arbitrary rationality
criteria very well. In a way, it only shifts the problem to another level. True, we can rea-
son about both arbitrary and rational behavior of agents (which is an advantage!), but the
actual notion(s) of rationality must be “hard-wired” in the model through the denotation
of plausibility terms [-]. Modeling an actual multi-agent system amounts therefore to
crafting a concurrent game structure and a fixed number of “trimming filters” that trim
off irrational options. Ultimately, this is not much different from hand-crafting a collec-
tion of separate game models: one for the unrestricted (arbitrary) play of agents, plus
one for each possible limitation of agents’ play (i.e., one model per plausibility term).
Of course, not all of these models can be easily represented as CGS (since in CGS avail-
ability of actions for different agents can be defined only separately; the same holds for

% We recall that A , p;' means that each player i gets af least v;.
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defining availability of actions at different states). Also, ATLP allows for “switching”
between these pre-wired model versions, which can be valuable in itself. Still, such a
framework does not seem truly elegant and satisfying.

Ideally, one would like to have a flexible language of terms that would allow to spec-
ify any sensible rationality assumption, and then impose it on the system. Section 33|
gives a hint how it can be done. Our idea is to use ATLI formulae 6 to specify sets
of plausible strategy profiles, with the presumed meaning that 7" collects exactly the
profiles for which 6 holds. Then, we can embed such ATLI-based plausibility spec-
ifications in formulae of ATLP in order to reason about rational agents. We call the
resulting language ATLPA™ and define it formally in Section 2]

4.2 ATLI-Based Plausibility Terms

Definition 8 (EATLP[ATLI])- Let (2* = {(0’9) ‘ 0 e ﬁATu(Agt, 11, {0’[1], . 70’[]6]})}
That is, £2* collects terms of the form (0.6), where 0 is an ATLI formula including
only references to individual agents’ parts of the strategy profile o. The language of
ATLPAT g defined as Larp(Agt, 11, 2%).

The idea behind terms of this form is simple. We have an ATLI formula 6, parame-
terized with a variable o that ranges over the set of strategy profiles J’. Now, we want
(0.0) to denote exactly the set of profiles from X, for which formula 6 holds. However —
as o denotes a strategy profile, and ATLI allows only to refer to strategies of individual
agents — we need a way of addressing substrategies of ¢ in €. This can be done by using
ATLI terms o[i], which will be interpreted as the ¢’s substrategy in o. Below, we define
the concept formally.

Definition 9 (CGSP for L,;, purn). Let (Agt, Q, I, 7, Act,d, 0) be a CGS, and let
T C X be a set of plausible strategy profiles. M = (Agt, Q, I, 7, Act,d, 0,1, 2%, [-])
is a CGS with plausibility iff the denotation [-] of terms from * is defined as follows.

First, we define a family of ATLI models M*=(Agt, Q, I, 7, Act,d,0,1°, Gtr, ||-|),
one for each strategy profile s € X, with &tr, = {olal}, and ||o[a]|| = s[a]. Then, we
define the plausibility mapping as:

[0.0]g ={seX| M qkE=6}.

For example, we may assume that a rational agent does not grant the other agents with
too much control over his life: (0. /\,cpq(Straclal)=(Agt \ {a})) Odead,). Note
that games defined by CGS are, in general, not determined, so the above specification
does not guarantee that each rational agent can efficiently protect his life. It only re-
quires that he should behave cautiously so that his opponents do not have complete
power to kill him.

It is now possible to plug in arbitrary ATLI specifications of rationality, and reason
about their consequences.

Example 7 (Matching pennies ctd.). It seems that explicit quantification over the oppo-
nents’ responses (lacking in ATLI) is essential to express undominatedness of strate-
gies (cf. [32]]). Still, we can at least assume that a rational player should avoid playing
strategies that guarantee failure if a potentially successful strategy is available. Under



A Logic for Reasoning about Rational Agents 53

this assumption, player 1 should never play tail, and in consequence player 2 controls
the outcome of the game:

M, qo = (set-pl 0. \ ¢ o ((Agt)) Omoney, — (strqofa])(Agt)) Omoneya)
PI1 (((2)) O(money1 A moneyz) A ((2))[d —(money; A money,)).

Moreover, if only Pareto optimal strategy profiles can be played, then both players
are bound to keep winning money (we recall that M{" is model M; extended with
propositions p! = money;):

M, qo k= (set-pl o.PO° () P1{(())(] (=start — money; A moneys).

Finally, restricting plausible strategy profiles to Nash equlibria guarantees that player
2 should plausibly win, but the outcome of player 1 is not determined:

MY, qo = (set-pl o.NE® (o)) P1({(0))0 (—start — money>)
A= ({(0) Omoneyy A =((0) 0 =money; ).

Example 8 (Bargaining ctd.). For the bargaining agents and x = (1 — 63) ", 1 62‘152 : +

(6162) >, we have accordingly:

1. Ma, qo |= (set-pl o.NE®(a))PL{(0) O (p5 A pz_ *) for every ;

2. Mz, qo = (set-pl 0.SPN(0))P1(0) O (pf A p;~");

3. Ma,q0 = (set-pl 0.SPN®(0))PL{0)0 (—p}* A —py:) for every 1 # & and
To £ 1 — K.

Thus, we can encode a game as a CGS M, specify rationality assumptions with an
ATLI formula 6, and ask if a desired property ¢ of the system holds under these as-
sumptions by model checking (set-pl ¢.0)¢ in M. We report our results on the com-
plexity of model checking ATLP in Section[3}

5 Model Checking Rational Play

In this section we show that model checking ATLP is A¥-complete, which seems in
line with existing results on the complexity of solving games. It is well known that
determining the existence of a solution concept instance with certain natural proper-
ties (e.g., a Nash equilibrium with expected utility of at least k, or a Pareto-optimal
Nash equilibrium) is NP-hard even for normal form (i.e., one-step) games in the set of
mixed strategies [T0/7]. Similar results are known for extensive turn-based games with
imperfect information and recall [922/5]. Formally, mixed strategies and imperfect in-
formation are absent in ATLP. However, the framework turns out to be quite powerful
in terms of expressiveness. In particular, imperfect information strategies (sometimes
called uniform strategies) can be characterized in ATLP for a relevant subclass of mod-
els, and checking strategic properties of systems in which all agents must play uniform
strategies is A¥Y-complete — which renders ATLP model checking also AY-complete.
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This coincides with another result from game theory: if both players in a 2-player im-
perfect information game have imperfect recall, and chance moves are allowed, then
the problem of finding a max-min pure strategy is X5 -complete .

We mainly consider checking formulae of ATLP against “pure” concurrent game
structures (i.e., we assume that plausibility assumptions will be specified explicitly in
the formula), although we briefly show, too, that the results carry over to model check-
ing against CGS with plausibility. The size of the input is measured with the number of
transitions in the model () and the length of the formula (/). Note that the problem of
checking ATLP with respect to the size of the whole CGSP (including the plausibility
set 1), is trivially linear in the size of the model — but the model size is exponential with
respect to the number of states and transitions.

5.1 Model Checking ATLP Is in AY

Model Checking ATLP with Plausibility Terms Expressed in ATLI. A detailed al-
gorithm for model checking ATLP IATL formulae against concurrent game structures is
presented in Figure 3 Apart from the model, the state, and the formula to be checked,
the input includes two plausibility specifications (each represented by an ATLI formula
and a state at which it should be evaluated). The first specification describes the cur-
rent set of plausible strategy profiles 7. The latter is the argument of the most recent
(set-pl -) operation, not necessarily incorporated into the definition of 1" yet — unless
the P1 operator has been used since. As both CTL and ATLI model checking is linear
in the number of transitions in the model and the length of the formula [6I21]], we get
the following.

Proposition 4. M, q = ¢ iff mcheck(M,q, ¢, T,q, T,q). The algorithm runs in time
APE with respect to the number of transitions in the model and the length of the formula.

Model Checking ATLP with Arbitrary Plausibility Terms. The algorithm in Figure[3]
uses the ATLI-based plausibility terms presented in Section[£.2] In the general case, we
can think of any arbitrary implementation of terms in (2. As long as plausiblestrat
(s, M, q,0) can be computed in polynomial time, it does not affect the overall complex-
ity of mcheck. In fact, it is enough to require that plausiblestrat(s, M, q,6) can be
computed in nondeterministic polynomial time, as the witness for plausiblestrat can
be guessed together with the strategy profile s in function solve, and with the strategy
profile ¢ in function beatable, respectively.

Proposition 5. If the verification of plausibility (plausiblestrat) is in NP, then the
model checking algorithm (mcheck) is in AY with respect to m, 1.

Note that, if a list (or several alternative lists) of plausible strategy profiles is given
explicitly in the model (via the plausibility set 77 and/or the denotations of abstract
plausibility terms w from Section 2.2), then the problem of guessing an appropriate

7 Note that strategic operators can be nested in an ATLP formula, thus specifying a sequence
of games, with the outcome of each game depending on the previous ones — and solving such
games requires adaptive calls to a 3% oracle.
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function mcheck(M, q, p,01,q1,02,q2);
Returns “true” iff ¢ holds in M, q. The current plausibility assumptions are specified by the truth of the ATLI formula 6; at
state g1. The most recent plausibility specification (not necessarily incorporated into the definition of the current plausibility

set 7 yet) corresponds to the truth of 02 at g2.

cases p = p, ¢ = ), = Y1 A2+ proceed as usual;

case ¢ = (set-pl 0.0")¢ : return( mcheck(M, q,v, 01, q1,0",q));

case p = Pl : return( mcheck(M, q, 1,02, q2,02,G2));

case ¢ = Ph) : return( mcheck(M, q,%, T, q1,02,q2));

case ¢ = ((A) O, where ¢ includes some ((B)) : Label all ¢ € @, in which
mcheck(M, q,,01,q1,02,q2) returns “true”, with a new proposition yes. Return
mcheck(M, q, ((A) Oyes, 01, q1,02,q2);

case o = ((A)) O, where ¢ includes no ((B)) : Remove all operators P1, Ph, (set-pl -)
from ¢} (they are irrelevant, as no cooperation modality comes further), yielding +’. Return
solve(M, q, (A) O, b1, q1);

cases (A1 and (A1 U ¢ analogously ;

end case

function solve(M, q,p,0,q");
Returns “true” iff ¢ holds in M, q under plausibility assumptions specified by the truth of @ at ¢’. We assume that ¢ =
((A) O 1), where 1) is a propositional formula, i.e., it includes no ((B)), P1, Ph, (set-pl -).

m Label all ¢ € Q, in which 1) holds, with a new proposition yes;

m  Guess a strategy profile s;

m if plausiblestrat(s, M, q ,0) then return( not beatable(s[A], M, q, ((A) O yes));
else return( false);

function beatable(sa, M, q, (ANv,q,0);
Returns “true” iff the opponents can beat s 4 so that it does not enforce «y in M, ¢ under plausibility assumptions specified
by the ATLI formula 0 at ¢’. The path formula 7 is of the form Q), O 4, v U vp” with propositional v, 3.

m  Guess a strategy profile ¢;
m if plausiblestrat(t, M, q',0) and t[A] = s then
M’ :=“trim” M, removing all transitions that cannot occur when ¢ is executed;
— return( mcheckcrr (M', q, Av));
else return( false);

function plausiblestrat(s, M, q,0);
Checks if strategy profile s satisfies formula 6 in M, q.

m return( mcheckarri(M?,q,0)); // For M?®, cf. Definition 9

Fig. 3. Model checking ATLP

strategy from such a list is in NP (memoryless strategies have polynomial size with
respect to m). As a consequence, we have the following:

Corollary 1. Model checking ATLP (with both abstract and ATLI-based plausibility
terms) against CGSP is in AY with respect to m, .
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5.2 Model Checking ATLP Is Ag-Hard

We prove the A -hardness through a reduction of SNSATs, a typical AE-complete
variant of the Boolean satisfiability problem. The reduction follows in two steps. First,
we define a modification of ATL;, [28], in which all agents are required to play only
uniform strategies. We call it “uniform ATL;,” (ATL. in short), and show a polyno-
mial reduction of SNSAT; to ATL}, model checking. Then, we point out how each
formula and model of ATL} can be equivalently translated (in polynomial time) to a
CGS and a formula of ATLP™ 1 thus yielding a polynomial reduction of SNSAT,
to ATLPAT, Again, we consider two cases: ATLP with arbitrary plausibility terms,
and ATLP with terms defined through formulae of ATLI. The first part of the reduction
(from SNSAT> to model checking ATL},) is the same in both cases, but the second
part (from model checking ATLY to ATLP) proceeds differently, and we discuss both
variants accordingly.

Interested readers are referred to the technical report [16], where the construction is
described in more detail.

Uniform ATL;,.. The semantics of ATLY. can be defined as follows. First, we de-
fine models as concurrent epistemic game structures (CEGS), i.e. CGS with epis-
temic relations ~,C @ x @, one per agent. (The intended meaning of ¢ ~, ¢’ is
that agent a cannot distinguish between between states ¢ and ¢’.) Additionally, we re-
quire that agents have the same options in indistinguishable states, i.e., that ¢ ~, ¢
implies d,(q) = da.(q’). A (memoryless) strategy s is uniform if ¢ ~, ¢ implies
s%(q) = s%(¢') forall ¢,¢' € Q,a € A.

M,q E (AYiO¢ iff there is a uniform strategy s such that, for every uniform
strategy tag\ 4, every a € A, ¢’ such that ¢ ~, ¢/, and X € out({sa,tagt\4), )
we have M, A[1] = ¢;

(ANED g, (Aol - analogously.

Reduction of SNSAT> to Model Checking of ATLY,. We recall the definition of
SNSAT, after [23]].

Definition 10 (SNSAT5)

Input: p sets of propositional variables X, = {x1,, ..., Tk}, p sets of propositional
variables Y. = {y1,r, ..., Yrr }, D propositional variables z,, and p Boolean formulae
- in positive normal form (i.e., negation is allowed only on the level of literals). Each
©r involves only variables in X, UY, U{z1, ..., z-_1}, with the following requirement:
zr = AXVY 00 (21, ooy 2rm1, X, Vo).

Output: The value of z,.

Note that every non-literal formula ¢, can be written as x1 op x2 with op € {A,V}.
Recursively, x; can be written as ;1 op; Xi2 and x;; as Xij1 0p;j Xij2 €tc.

Our reduction of SNSAT: is an extension of the reduction of SNSAT presented
in [17]. That is, we construct the CEGS M,. corresponding to z, with two players:
verifier v and refuter r. The CEGS is turn-based, that is, every state is “governed” by
a single player who determines the next transition. Each subformula x;,. ;, of ¢, has
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Fig.4. CEGS M for o1 = ((z1 Ax2) V=y1) A (021 Vy1), w2 = 21 A (521 V y2)

a corresponding state g;, .. ;, in M,. If the outermost logical connective of ¢, is A, the
refuter decides at gy which subformula x; of ¢, is to be satisfied, by proceeding to the
“subformula” state g; corresponding to ;. If the outermost connective is V, the verifier
decides which subformula y; of ¢, will be attempted at go. This procedure is repeated
until all subformulae are single literals. The states corresponding to literals are called
“proposition” states.

The difference from the construction from is that formulae are in positive nor-
mal form (rather than CNF) and that we have two kinds of “proposition” states now:
i, ...i, refers to aliteral consisting of some x € X, and is governed by v; g;, .. 4, refers to
some y € Y, and will be governed by r. Now, the values of the underlying propositional
variables x, y are declared at the “propositional” states, and the outcome is computed.
That is, if v executes T for a positive literal, i.e. x;,...s, = z, (or L for x;,..;, = —x) at
i, ...i,» then the system proceeds to the “winning” state ¢ ; otherwise, the system goes
to the “sink” state ¢ . For states ;, .. ;, the procedure is analogous. Models correspond-
ing to subsequent z, are nested like in Figure . “Proposition” states referring to the
same variable z are indistinguishable for v (so that he has to declare the same value of
x in all of them), and the states referring to the same y are indistinguishable for r. A
sole ATLY. proposition yes holds only in the “winning” state g+. As in [17], we have

the following result which concludes the reduction.

Proposition 6. The above construction depicts a polynomial reduction of SNSAT5 to
model checking ATL?,. in the following sense. Let

8 All states in the model for z, are additionally indexed by 7.
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By = (V) (~neg) Uyes, and
B, = (v)!h(~neg) U (yes V (neg A (@) 1,0~B,_1)) forr =2,....p.

Then, we have z,, iff My, ¢5 ):ATL" Dp.

From ATL}. to ATLP with Arbitrary Plausibility Terms. Now we show how ATL!.
model checking can be reduced to model checking of ATLP. We are given a CEGS
M, astate ¢ in M, and an ATL ¥ formula ¢. First, we sketch the reduction to model
checking arbitrary ATLP formulae against CGSP (i.e., CGS with plausibility sets given
explicitly in the model). Let X* be the set of all uniform strategy profiles in M. We
take CGSP M’ as M (sans epistemic relations) extended with plausibility set 7" = X",
Then:

Mg Fyppe (AVe i Mgl o PLAD,

which completes the reductiorl].

For model checking ATLP formulae with abstract terms w against “pure’” concurrent
game structures, the reduction is similar. We take CGS M’ as M minus epistemic
relations, and plus a plausibility mapping [-] such that [w], = X™. Then, again,

M, q Epyqpu (A0 3ff Mg ppy p (set-pl w)PI (Ay M

From ATL},, to ATLP with ATLI-Based Plausibility Terms. The reduction of ATL,.

model checking to model checking of ATLPITLI against “pure” CGS is more sophis-
ticated. We do not present a reduction for full model checking of ATLY. ; it is enough
to show the reduction for the kind of models that we get in Section3.2l We begin the
reduction by reconstructing M), to M, in which the last action profile is “remembered”
in the final states. That is, the construction yields states of the form (q, a1, ..., ak),
where ¢ € {qT,q.} is a final state of the original model M, and {1, ..., ay) is the
action profile executed just before the system proceeded to g. Each copy has the same
valuation of propositions as the original state ¢, i.e., 7' ({g, a1, ..., ax)) = 7(q). Then,
for each action « € Act and agent i € Agt, we add a new proposition i : . Moreover,
we fix the valuation of i : v in Mz’, so that it holds exactly in the final states that can be
achieved by an action profile in which ¢ executes « (i.e., states (q, a1, ..., @, ..., Q).
Note that the number of both states and transitions in Mz/> is linear in the transitions of

? We note in passing that, technically, the size of the resulting model A/’ is not entirely poly-
nomial. M’ includes the plausibility set 7", which is exponential in the number of states in M
(since it is equal to the the set of all uniform strategy profiles in M). This is of course the case
when we want to store 7" explicitly. However, checking if a strategy profile is uniform can be
done in time linear wrt the number of states in M, so an implicit representation of 7" (e.g., the
checking procedure itself) requires only linear space.

We do not discuss this issue in more depth, as we focus on the other variant of ATLP (with
ATLI-based terms) in this paper.
10°Cf. footnote [0
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M, The transformation produces model M,, which is equivalent to M, in the follow-
ing sense. Let ¢ be a formula of ATL?. that does not involve special propositions i : a.
Then, forall ¢ € Q: M, q ):ATLQLT @iff M, q ):ATLQLT ©.

In the next step, we will show that uniformity of a strategy can be characterized
in ATLI extended with epistemic operators K,. K, reads as “agent a knows that ¢”.
The semantics of ATLI+K extends that of ATLI by adding the standard semantic clause
from epistemic logic: M, q | K,p iff M, ¢’ = ¢ for every ¢’ such that g ~, ¢’. Let
us now consider the following formula of ATLI+Knowledge:

uniform(o) = (stro)(0) 0 /\ \/ Ki(0) Oi : o

i€Agt aed(i,q)

The reading of uniform(o) is: suppose that profile o is played (stro); then, for all
reachable states (((())LJ), every agent has a single action (A\;cxz Vaeai,q) that is
determined for execution ({#) Oi : ) in every state indistinguishable from the cur-
rent state (K;). Thus, formula uniform (o) characterizes the uniformity of strategy
profile o. Formally, for every concurrent epistemic game structure )M, we have that
M,q E ATLI+K uniform(o) iff ||ofa]|| is uniform for each agent a € Agt (for all
states reachable from ¢). Of course, only reachable states matter when we look for
strategies that should enforce a temporal goal.

To get rid of the epistemic operators from formula uniform(c) and epistemic re-
lations from model lev’ we use the construction from [[14]]. The construction yields a
concurrent game structure ¢r(M) and an ATLI formula ¢r(uniform (o)) with the fol-
lowing characteristics. For every CEGS M and ATLY. formula ¢, we have:

DM, q = pqyu @ ifftr(M),q = pqyu tr(e):
(2) My, q ':ATLI+K uniform(o) iff tr(M,), q ':ATLI+K tr(uniform(o)).

This way, we obtain a reduction of SNSAT5 to model checking of ATLPATH

Proposition 7

zp iff tr(M)),qf = (set-pl o.tr(uniform(c)))Pltr(P,).

ATLPA™]
Proof. Wehave z, iff M), qf ':ATL?T D, iff  tr(M)), qf ':ATL?T tr(®,)
iff tr(M)), qf ):ATLP[AT”] (set-pl o.tr(uniform(c)))Plir(P,). [

Theorem 1. Model checking ATLP is AY -complete with respect to the number of tran-
sitions in the model and the length of the formula.

On the way, we have also proved that checking strategic abilities when all players are
required to play uniformly is A¥-complete (that is, harder than ability against the worst
line of events captured by ATL;, formulae, which is “only” AY-complete). We believe
it is an interesting result with respect to verification of various kinds of agents’ ability
under incomplete information.

6 Conclusions

We propose a logic in which one can study the outcome of rational play in a logical
framework, under various rationality criteria. To our knowledge, there has been very
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little work on this issue (although “solving” game-like scenarios with help of various
solution concepts is arguably the main application of game theory). Note that we are
not discussing the merits of this or that rationality criterion here, nor the pragmatics of
using particular criteria to predict the actual behavior of agents. Our aim, most of all,
is to propose a conceptual tool in which the consequences of accepting one or another
criterion can be studied.

We believe that the logic we propose provides much flexibility and modeling power.
The results presented in Section[3also suggest that expressive power of the language is
quite high. In terms of technical results, we prove that model checking ATLP is AE-
complete, and establish the model checking complexity of another interesting problem
on the way.
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Abstract. Emotional-BDI agents are BDI agents whose behaviour is
guided not only by beliefs, desires and intentions, but also by the role of
emotions in reasoning and decision-making. The Egp logic is a formal sys-
tem for expressing the concepts of the Emotional-BDI model of agency.
In this paper we present an improved version of the Egp logic and show
how it can be used to model the role of three emotions in Emotional-BDI
agents: fear, anziety and self-confidence. We also focus in the computa-
tional properties of Egpi which can lead to its use in automated proof
systems.

1 Introduction

Emotional-BDI agents are BDI agents whose behaviour is guided not only by
beliefs, desires and intentions, but also by the role of emotions in reasoning and
decision-making. This conceptual model was developed by Pereira et al. [I] and
a first version of the Egp) logic was presented in [2], where a first formalisation of
fear was given. In this paper we present an improved version of the Egp, logic in
order to model the role of three emotions in Emotional-BDI agents: fear, anziety
and self-confidence. The aim of this paper is to show how Egp, logic has enough
expressivity to model some of the properties of these emotions, following Oliveira
& Sarmento’s model of emotional agent [345].

The main motivation for the current work was to provide a formal system
in which the concepts of the Emotional-BDI model of agency could be logically
expressed. Using these concepts we can specify distinct behaviours which are
expected from agents under the influence of emotions. The existing formal sys-
tems for rational agency such as Rao & Georgeff’s BDI logics [6I7] and Meyer’s
et al. KARO framework [BIQTOTT] do not allow a straightforward representa-
tion of emotions. However, both have properties which we can combine in order
to properly model Emotional-BDI agents.

The Egpy logic is an extension of the BDIct( logic, equipped with explicit refer-
ence to actions, capabilities and resources. The choice of BDI¢t, and not the more

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 62 2008.
© Springer-Verlag Berlin Heidelberg 2008



Formal Modelling of Emotions in BDI Agents 63

powerful BDlctL+, was motivated by our interest in automated proof methods that
will allow the development of executable specification languages of rational agency
or of formal verification systems for the Emotional-BDI model of agency.

This paper is organised as follows. In Section 2l we define the Egp logic. This
logic is based in BDlct logic and we begin by presenting the new operators that
were added. Besides the syntax and semantics of Egp|, we present the axiom
systems for the new modal operators. We also establish the decidability of Egpy-
formulae, by transforming Egp-formulae into equivalent BDIct ones. In Section
we use the Egp-logic to define a set of conditions which are pre-requisites for
defining how emotions are activated in Emotional-BDI agents and also special
purpose actions which are executed by the agent when it ”feels” these emotions.
In Section @ we model the activation and effects of each of the emotions in
Emotional-BDI agents using the previous conditions. In Section [f] we give some
information about the ongoing implementation work on the decision procedures
of Egpr. In Section [B] some related work is considered. Finally, in Section [ we
present some conclusions about this work and point some topics for ongoing and
future research in the Egp; logic.

2 The gBDI LOgiC

The Egp) is an extension of Rao & Georgefl’s BDIct.. This extension adds new
modal operators for representing the concepts of fundamental desires, capabil-
ities, action execution and resources. The semantics of Egp, is therefore given
by the satisfiability of Egpj-formulae on extended BDlct -models, considering
accessibility-relations and functions for modelling the new operators.

2.1 Informal Description

The BDlcty logic is a multi-modal logic which combines Emerson’s et al.
branching-time logic CTL [I2] and modal operators for representing the men-
tal states of belief (Bel), desire (Des) and intention (Int) as defined by Bratman
et al. in [13]. The underlying model of BDIlct. has a two dimensional struc-
ture. One dimension is a set of possible worlds that correspond to the differ-
ent perspectives of the agent representing his mental states. The other is a set
of temporal states which describe the temporal evolution of the agent. A pair
(world, temporal state) is called a situation. In the Egp logic we added the fol-
lowing modal operators:

Fundamental desire: a fundamental desire is a desire which represents vital
conditions to the agent, like its life or alike propositions. We model this
concept using the modal operator Fund.

Actions: in &gp; we consider regular actions as defined in Propositional Dy-
namic Logic PDL [I4]. In this way we can refer to the actions that the agent
performs, in particular when he is under the influence of emotions. Given a
finite set of atomic actions, regular actions are derived through the usual test
operator 7 and regular action operations (sequence, disjunction and Kleene
closure).
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Capabilities: a capability represents the operational structure of the execution
of an action. This concept is similar to KARQO’s ability. This is represented
by the modal operator Cap.

Resources: resources are the means (physical or virtual) for engaging the exe-
cution of actions. For the modelling of resources we consider the operators:

— Needs(a, r): the atomic action a needs a unit of the resource r to be
executed.

— Available?(r): the agent has ¢ units of the resource r, with0 < ¢ < MAX,
MAX > 0.

— Saved?(r): the agent has ¢ units of resource r saved for future usage.

We also consider the operator Res for representing the availability or not of all
the resources needed to execute a regular action. We consider both Available
and Saved operators for the following reasons: the Available operator provides
only information about the available resources at the agent’s current state
of execution. No extra-information is given about the amount of resources
available in the future. However, this last information is important for agent
decision-making. If an agent considers that it would be inevitable to execute
some action in the future, it may also consider necessary to protect the
needed resources from being badly used and therefore not available when
really needed. This " protection” of resources is given by the Saved operator.
If a unit of a resource r is saved it cannot be used in other actions. It must
first be freed and made available by the agent.

In terms of actions we consider three families of special purpose atomic ac-
tions, for the management of resource availability:

— get(r): the agent gets one more unit of the resource r and this unit becomes
available for being used.

— save(r): the agent saves one unit of the resource r which was previously
made available to the agent.

— free(r): the agent frees one unit of the resource r which has been previously
saved by the agent and makes it available to be used.

2.2 Syntax

As in BDlctL we distinguish between state formulae, which are evaluated in a
single situation, and path formulae which are evaluated along a path.

Definition 1. Considering a non-empty set of propositional variables P, a finite
set of atomic actions Apy that include the set of resource availability manage-
ment actions, a finite set of resource symbols R and a set of resource quantities
{0,..., MAX}, with MAX > 0, the language of Espi-formulae is given by the
following BNF-grammar:

— state-formulae:
pu=pl-pleAe|{a)p|E|Ap|Bel(p)| Des(y)|Int(p) |
Fund(y) | Needs(a, ) | Available?(r) | Saved?(r) | Cap(«) | Res(«)
where p € P, a € Apt, 7 € Rand0 < ¢ < MAX.
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— path-formulae:
¥ = Xe | (pUp)
— regular actions (Ara):
a = id|la € Ap|@? |ya|la+ala*

In addition, we introduce the following abbreviations: T, L, oV and ¢ — 1 are
abbreviations of =(p A —p) (with p being a fixed element of P), =T, =(—¢ A =)
and —(p A =), respectively; AFp, EFp, AGy and EGy are abbreviations of
A(TUg), E(TUg), “"EF—=¢ and —AF-yp, respectively. The formula [a]p stands
for =(a)—p. Tterated action ™, with n > 0, are inductively defined by a® = id
and a("t1) = o; . Informally, X means next temporal state, U true until, F in a
future temporal state, G globally true. The path quantification modal operators E
and A mean, respectively, in one path and in all paths. The regular action modal
operator (o) means possibly true after a execution of «.

2.3 Semantics

Eppi-formulae are interpreted in extended BDlct. models, called Egpj-models.
We follow Schild’s approach to BDlct. [I5], by considering a situation as a pair
0 = (w, s), where s is a temporal state of the non-empty set 7" and w refers to
a world (mental state perspective) from the non-empty set W.

Definition 2. Given a non-empty set of situations A, a non-empty set of propo-
sitional variables P, a finite set of atomic actions Apat, a set of resource symbols
R and a positive constant M AX, we define an Egpi-model as a tuple:

M= (A Rr,{Ra:a € An},B,D,I,F,V,C,avl, svd, needs)
such that:

- Rr C A x A is a temporal accessibility-relation, such that:
o it is serial, i.e., V6 € A, 30’ € A such that (§,8") € Ry;
o if ((w;, s;), (wg, s1)) € Ry, then w; = wg.
~ Ra C Ry is an atomic action accessibility-relation, with a € Apt;
- B,D, I, F C Ax A are accessibility-relations for the mental state operators.
These relations have the following property (considering O € {B,D,Z,F}):

if ((w;, 857, (wg, s1)) € O then sj = s;;

-V :P — p(4) is a propositional variable labelling function;

= C: Ap — p(AQ) is a capability labelling function;

— needs : Apx — 9(R) is a function that defines which resource symbols in R
are needed to execute each action of Aat;

—avl: Ax R —{0,...,MAX} is a function that for each situation defines
which quantity of each resource is available;

—svd: Ax R—{0,..., MAX} is a function that for each situation defines
which quantity of each resource is saved.
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As in BDlcrp path-formulae are evaluated along a path 75 = (g, 1, d2, . . .), such
that 0 = dp and Vi > 0, (6;,0,41) € Rr. The k" element of a path 75 is denoted
by s [k].

The accessibility-relation and the capability labelling function for atomic ac-
tions are extended to regular actions «, as usual in PDL and KARO. We denote
them, respectively, by Ré and ¢}

For the modelling of resources the functions avl and svd verify the following
properties:

— the total amount of resources which the agent can deal with cannot be greater
than MAX:
Vo e AVre R, 0 < avl(d,r) + svd(d,r) < MAX.

— the execution of an atomic action consumes one unit of each resource needed
for the execution of that action:
Vr € needs(a),V(0,8") € Ry, avl(d’,r) = avl(d,r) — 1.

Also, we assume that for the resource management atomic actions we have:
needs(get(r)) = needs(save(r)) = needs(free(r)) =0, Vr € R

The availability of resources for executing regular actions is given by:

res : Aga — p(AQ)

{0]if r € needs(a) then avl(r,d) > 1}, ifneeds(a) # 0
res, =

A, otherwise.
respr = A

r€Sa:s = {0|0 € res, A3(0,0') € RZ, 8 € resplt
reSatp = resq Uresg
reSqr = Up>o(resqan)

The intuition behind the value of the resource availability function res for
a* is that the iterated execution of « is bounded to the existence of a finite
amount of resources. We are now in conditions to define the satisfiability for an

Eppi-formula.

Definition 3. Let M be an Egpi-model and § a situation. The satisfiability of
an Egpi-formula is defined inductively as follows:

— state formulae satisfaction rules:
e M. 0 E piffd eV(p)
M,5 |E —piff M,6 = ¢
M5 E oAV iff M,6 = oeM,d E ¢
M,5 | EY iff exists a path ws such that M, w5 =
M,§ = AY iff for all paths w5, M,ms = ¢
M,§ = {(a)p iff exists (0,8') € R2 such that M, = ¢
M, = Bel(p) iff for all (6,0") € B, M,§ = ¢
M, 6 = Des(p) iff for all (6,8") € D, M,d" = ¢
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o M,6 | Int(p) iff for all (6,0") € Z, M,§ = ¢

o M,5 = und( ) iff for all (6,8") € F, M,d' = ¢
e M,§ = Cap(a) iff § € ¢4

e M,0 | Needs(a,r) iff r € needs(a)

e M,6 E Available?(r) iff avl(d,7) = q

e M,0 | Saved(r) iff svd(d,r) =q

o M,d |= Res(a) iff 6 € resq
— path formulae satisfaction rules:
o M,ms = Xy iff M,ms[1] = ¢
o M,ms E ¢1Ups iff 3k > 0 such that M, ms[k] &= 2 and Vj, 0 < j <
k (M mslj] 1)

2.4 Properties of Egp

The axiomatic characterisation of Egp;’s modal operators of time and BDI mental
states are the same as in BDl¢cT-logic. The modal operator Fund, for fundamental
desires, follows the axiom set of Des and Int operators, which is the KD system
[16], i.e., F is a serial accessibility-relation. The Bel operator verifies the K D45
axioms, i.e., B is an equivalence relation. The temporal operators follow the
axioms of CTL and the action execution operators verify the axioms of PDL.
Since both branching-time and regular action execution structures coexist, we
have the following properties:

Theorem 1. Let M be an Egpi-model, a an atomic action and « a regular
action. We have:

1. if M,é = {(a)p then M,§ = EXe, a # id.

2. if M,d = (a)p then M, = EFp.

3. if M,§ = {(a*)p then M, E E({(a) TUp).
)-

Proof (sketch). In the first case, let M, = (a)p. Then it exists (d,d’) € R, such
that M,d" | . By definition, (§,¢’) € Ry and it exists 75 = (5,¢’,...) such
that M, 7s[1] = ¢. Again, by definition, we have M, = EXy .

In the second case, we proceed by induction in the structure of a. The base
case proves along the lines of the previous proof. For the induction step, we
present here only the case of & = 3 4+ v we have M,§ = (B)p or M,d E (7).
By the induction hypothesis we M, = EFp or M, ¢ |= EFp, which is equivalent
M, § |= EFg. The other cases are proved analogously.

For the last case proceed again by induction on a. We only present the base
case. Let o« = a. By definition it exists n > 0 such that M, d |= (a™)¢. Therefore
it exists 6’ such that (4,0") € R4, and M, ¢ |= ¢. Considering now the path 75 =
(ms[0], ws[1], ..., ms[n — 1]).7" such that ms[n] = #’[0] = ¢’. Since V(ms[i], w5[i +
1]) € RA, for 0 < i < n — 1 by definition we have M, ms[i] = (a)T for the
same ¢ and M, ws[n] = ¢. By definition and considering the path 75 we have

M, 6 = E({a) TUp).

Capabilities are characterised similarly to abilities in the KARO framework.
The axioms for the Cap modal operator are:
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— Cap(p?

(¢?) <
~ Cap(a; 8) < Cap( ) A {a)Cap(B)
~ Cap(a + 3) < Cap(a) v Cap(3)
— Cap(a*) < Cap(a) A (a)Cap(a®)
— Cap(a) A (a*)(Cap(a) — (a)Cap(a)) — Cap(a™)

Resource availability for regular actions follows almost the same axioms that
characterise the Cap operator. However, the unbounded composition operator *
behaves differently, bounding the execution of an action a* to a finite number
of compositions of a. This composition stops when there are no resources to
execute o once more. The Res operator verifies the following axioms:

- Res(get( )
— Res(save(r)) <
— Res(free(r)) <
~ Res(¢?) = T
- Res( ) = Nrer (Needs(a r)— \/?L/EX Available"(r))
Res(
Res(
Res(
(

s

— Res(a; 3) « Res(a) A (a)Res(3)

— Res(a + ) < Res(a) V Res(p3)

— Res(a*) < Res(a) A {a)Res(a*)

~ Res *) < >(RES(OZ) — <Oé> Res(a)) - Res(a*)

Resources are also characterised by axioms which deal with the modal operators
Available, Needs and Saved. First we define some abbreviations that represent,
respectively, the maximum quantity of available and saved resources, in a situ-
ation:

«
«
(67

— MaxAvl(r) =gc; Available?(r) A ~Available!*") (r)
— MaxSvd?(r) =gcy Saved?(r) A —Saved @+ (1)

The following axioms characterise the interaction between action execution and
resource availability, considering a & {get(r), save(r), free(r)|r € R}:

— MaxAvl?(r) A Needs(a, ) — [a]MaxAvI9™ D (), 0 < ¢ < MAX
— MaxAvl?(r) A =Needs(a, ) — [a]MaxAvl?(r), 0 < g < MAX

The following axioms characterise the dynamics of the availability of resources,
considering both resource availability limits and the execution of the special
actions to manage them. We have:

— resource availability limits:

Available®(r), Vr € R

Saved’(r), Vr € R

Available?(r) — Available""V(r), 1 < ¢ < MAX
Saved?(r) — Saved"V(r), 1 < ¢ < MAX
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— resource availability and resource management actions:

Needs(get(r),r’) — L, Vr,7’ € R

Needs(save(r),r’) — L, Vr,r’' € R

Needs(free(r),r’) — L, Vr,r' € R

MaxAvl?(r) — [get(r)]MaxAvlTD (), for 0 < ¢ < MAX
MaxAqu(r)/\MaxSvdql (r) — [save(r)](Max/—\vI(q_l)(r)/\MaxSvd(qu)(r)),
with 0 <g+¢ < MAX

o MaxAvl?(r) AMaxSvd? (r) — [free(r)](MaxAvI(qH)(r)/\MaxSvd(qlfl)(T)),
with 0 <g+¢ < MAX

2.5 Decidability

The decidability of Egp is obtained by transforming an original Egpj-formula ¢
into a new formula ¢’ which is evaluated in a modified Egpj-model. This mod-
ified model is a BDIlct -model which considers the accessibility relation F and
special propositional variables which represent the execution of atomic actions,
capabilities and resource availability. Let £ be an Egp| language and P the set of
propositional variables. We define a new language £’ equal to £ except that it
has a new set of propositions P’ that is the union of the following disjunct sets:

— the set of propositional variables P,

— the set of propositional variables which represent the atomic actions:
{done a|a € Aa},

— the set of propositional variables which represent the capabilities for atomic
actions:
{cap a|a € Apt},

— the set of propositional variables which represent the resources for atomic
actions:
{res ala € Apt},

— a set of propositional variables for representing the various quantities of
resources available:
{avl g rysvd qr|qe{0,..., MAX},r € R},

— a set of propositional variables for representing the resources needed for the
execution of each atomic action:
{needs a r|a € Ap,r € R}.

Considering an Egpi-model M, the modified model M’ is defined as follows,
extending the propositional labelling function of M.

Definition 4. Let M be an Egp-model such that:
M =(ARr,{Rs:a € An},B,D,I,F,V,C,avl, svd, needs),

a model M’ is a tuple:
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= <A7RT787D71—7 fv V/>7

such that V' : P' — p(A) is defined as follows, where a € Ay, p € P andr € R:

(p) =V(p),
(done a) = {&"|(5,0") € R2Y,
- V'(cap a) = C(a),
- V'(res a) = res,,
- V'(avl q r) ={d| M, ¢ |= Available?(r)},
- V'(svd q r) ={6| M, |= Saved?(r)},
— V'(needs a r) ={§| M, = Needs(a,r)}.

Note that in V'’ only atomic actions are considered. Therefore, any Egp-formula
must be normalised into an equivalent one where only atomic actions can occur.

Definition 5. For all Egpi-formula ¢ there exists a mnormalised formula ¢’ =
&(p), such that the normalisation & is inductively defined as follows:

— normalisation of reqular action formulas:

§((a)p) = (a)¢(p),
E((¥7)e) =& Ne),
E(a)(p V) = E((a)p) VE(a)v),
(s Byp) = E((a)(B)e),
E{a+B)p) =E({a)p) VEB)y),
((id)p) = &(9),
(" )p) = E({a)(@m)e),
£({a")e) = S(E(() TUg)).

— normalisation of capability formulas:
§(Cap(a)) = Cap(a),

§(Cap(e?) =T,

§(Cap(a; B)) = ¢&(Cap(a) A (a)Cap(p)),

§(Cap(a + 7)) = £(Cap(a)) v £(Cap(p)),

§(Cap(e”))  =¢&(E(Cap(a) A (a)Cap(a))UT)).
— normalisation of resource formulas:

&(Needs(a,r)) = Needs(a,r),

&(Available?(r)) = Available?(r),

&(Saved?(r)) = Saved?(r),

é(Res(a) = Res(a),

ERes(p?)) =T,

§(Res(a; 8)) = &(Res(a) A (@)Res(D)),
§(Res(ar+ 3)) = {(Res(a)) v £(Res(f)),
&(Res(a®)) = &(E(Res() A () T))U—Res(a))).
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— normalisation of other formulas:

£(T) =T,

£(p) =p,

£(—p) = =(&(p)),
ElpNp)  =E&(p) NEW),
§(AY) =A(&(¥)),
§(EY) =E((®)),
£(Xp) = X(&(p)),
E(p1Up2) = (E(p1)UE(p2)),
£(Bel(p)) = Bel(&(v)).
{(Des(p)) = Des(&(¢)),
E(Int(p)) = Int(&(p)),
{(Fund(p)) = Fund(£(p)),

After normalisation, we apply the transformation defined below, so that the
resulting formula can be evaluated in a model M’.

Definition 6. Let ¢ be an normalised Egpi-formula. The transformation of ¢
to ¢’ is given by T, inductively defined as follows:

— propositional-formulae:
™(T) =T,
T(p)  =p,
T(mp)  =(7(p)),
(e A1) =7(p) AT(¥).

— temporal-formulae:

T(AY) = A(r(p)),
7(Ey) = E(7(9),
TXp)  =X(7(¥)),

T(p1Up2) = (7(¢1)UT(p2)).

— action execution formulae:
~({a)¢) = EX(done a A7()),
T([a]lp) = AX(done a — T(p)).

— mental-state formulae:
7(Bel(p)) = Bel(r(¢)),
7(Des(p)) = Des(7(p)),

7(Int(p)) = Int(7(v)),
7(Fund()) = Fund(7(¢)),

— capabilities and resources formulae:
r(Cap(a) = capa,
7(Res(a)) =res a,
7(Needs(a,r)) = needs a r,
7(Available?(r)) = A< <, (avl s 1),
7(Saved?(r)) = /\O;s;q(svd s 7).

Now we can present the following theorem.
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Theorem 2. Let M be an Egpi-model, § a situation and ¢ a normalised Egpy-
formula. If M,§ = ¢ then M',6 = 7(p).

Proof. (Sketch). Proof is done by induction of the structure of ¢o. We present here
only the case ¢ = Cap(a). Assume that M, = Cap(a). By definition, 6 € C(a).
By definition of M’ we get 6 € V/(cap a) which is equivalent to M’,§ |= cap a.
Since 7(Cap(a)) = cap a we get M',§ = 7(Cap(a)).

Using this theorem, we obtain the decidability of a Egpj-formula ¢ by trans-
forming it into 7(£(¢)) and applying to the latter the tableau construction for
BDlcTL, with a rule for expanding formulas containing the Fund modal operator.
The algorithm for building such tableau is based on the decision procedures for
BDlcTe, developed by Rao & Georgeff in [6]. In particular we use the notions of
fully extended propositional tableau and of a fragment DAG|[w, ¢] as defined in
the cited work of Rao & Georgeft.

Definition 7. Let ¢ be a Egpi-formula and 7(&()) = ¢. The tableau construc-
tion for Egp) is defined as follows:

1. build a tree with just one node wy, called root, such that L(wgy) = {p}.
2. repeat (a) — (d) until none apply:

(a) build a propositional tableau: if w is a leaf, L(w) is not inconsistent,
L(w) is not a propositional tableau and 1 is the smaller witness of this
fact, then:

i. if 1 is ~—vy, create a node w', son of w, such that L(w') = L(w)U{v},
. if ¥ is y A O, create a node w', son of w, such that L(w'") = L(w) U
{, 0},
iii. if ¥ is —(y A 0), create two nodes w' and w”, sons of w, such that
L(w') = L(w) U{—} e L(w") = L(w) U {-0}.

(b) build a fully extended propositional tableau: if w is a leaf, L(w) is not
inconsistent, L(w) is not a fully extended propositional tableau and v is
a witness of this fact, then create two nodes w' e w", sons of w, such
that L(w') = L(w) U {0} e L(w") = L(w) U {4},

(c) extend CTL-formulas: if w is a leaf, L(w) is not inconsistent, L(w) is
a fully extended propositional tableau and contains the formulas AXpq,
oy AX @ EXy, L. EX,,, then create mo successors i, each containing
the set {¢1,...,0n, i},

(d) create mental states operator successors: if w is a leaf, L(w) is not in-
consistent and L(w) is a fully extended propositional tableau, then:

i. if L(w) contains —Bel(y1), ..., Bel(p,), Bel(11),...,Bel(¢y,), then

create n B-successors w;, each containing {—y;, ¥1,...,Um};

it. if L@w) contains —Des(p1), ..., Des(py,), Des@1), ..., Des(iy,), then
create n D-successors w;, each containing {—p;, 1, ..., Um};

iti. if L(w) contains —Int(p1),...,=Int(pn), Int(¢n),. .., Int(Y,,), then
create n I-successors w;, each containing {—@;, ¥1,...,m};

w. if Lw) contains =Fund(p1), ..., ~Fund(p,), Fund@:), ..., Fund(¥,,),
then create n F-successors w;, each containing {—¢;, 1, ..., 0m};



Formal Modelling of Emotions in BDI Agents 73

(e) mark nodes as ”satisfiable”: if w is not marked as "satisfiable”, then
mark it as so if:
i. L(w) is not a fully extended CTL tableau and exists a successor w’
of w which is marked as ”satisfiable”;
it. L(w) is a fully extended CTL tableau and all formulas AXp and EXe
are satisfied (through the existence of a fragment DAG|w, ¢]) and all
the B,D,T,F-successors are marked as “satisfiable”,
iti. L(w) is a fully extended CTL tableau and don’t exist formulas of
the type AXp, nor the type EXq, nor the type —Bel(p), nor the type
—Des(p), nor the type —Int(p) nor the type —=Fund(y), and L(W) is
not inconsistent.
3. if the root of the tableau is marked as ”satisfiable” then return “¢ is satisfi-
able”. Otherwise return “¢ is not satisfiable”.

Extending the work of Rao & Georgeff [6], we have the decidability of Egpy:
Theorem 3. The Egp) logic is decidable.

Proof. The extension of the syntax and semantics of BDIcT. to support the Fund
operator is similar to the proof of the decidability of the modal operators of Des
and Int in [6].

3 Preliminaries for Modelling Emotions in Egp,

In this section we present a series of concepts which will be useful for modelling
emotions in Egp;. These concepts refer to conditions that are the basis for mod-
elling the activation of emotions and the consequences that these emotions have
in the behaviour of the agent.

3.1 Resource Management Actions

We begin by defining special regular actions for dealing with resource manage-
ment. For that we consider the following abbreviations for regular actions:

- If(p, ) =dey (97 )
- IfE(<p7avﬂ) —def If(%a) +If(_‘<paﬂ)
— WhileDo(p, @) =aer ((¢750)%);—p?

We also consider a special function which, given a finite set of regular actions S,
returns the composition of all the actions in S, in some order (in this function
we consider that regular actions commute). This function, which we denominate
by eval set, is inductively defined as:

eval set : 9(ARa) — ARra
eval set() =1id
eval set({a}US) = aseval set(S), a & S

Based on the atomic actions for the of resource management, we define the
following set of resource management regular actions:
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GET: the agent gets all the resources needed to execute some atomic action.
Considering:
Condy (a,r) = Needs(a,r) A MaxAvl’ (1)
we have:
GET(a) = eval set({If(Cond;(a,r),get(r))|r € R})

SAVE: the agent saves a unit of each resource needed to execute an atomic
action. Considering;:
Condy(a,r) = Needs(a,r) A MaxSvd®(r)
we have:
SAVE(a) = eval set({If(Condz(a,r), IfE(AvI(r), save(r), get(r); save(r)))
v € RY)

FREE: the agent frees the resources previously saved for executing an atomic
action. Considering:
Conds(a,r) =4ey Needs(a,r) A Saved'(r)
we have:
FREE(a) = eval set({If(Conds(a,r),free(r))|r € R})

All these definition scale for regular actions a € Ag, and we can work with
for instance FREE(«) instead of FREE(a).

3.2 Proposition Achievement

For the agent to succeed in the execution of an action it must have both the
capability and resources for that action. We denote the existence of both of them
as effective capability. Formally we have:

— EffCap(e) =ger Cap(cr) A Res(a)

The agent also considers if it can or cannot execute some action to achieve the
truth of some proposition. Formally we have:

— Can(a, @) =ages Bel({a)p A EffCap(c))
— Cannot(e, ) =gef Bel(—(a)p vV —EffCap(a))

3.3 Risk and Favourable Conditions

The activation of emotions is based on conditions of the environment that show
to be positive or negative to the desires and fundamental desires of the agent.
First we define the following conditions:

Risk condition: a proposition ¢ is said to be at risk if there is a next situation
in which =y is true:
AtRisk(p) =ges EX(=p)

Possibly at risk: a proposition ¢ is said to be possibly at risk if there exists a
future situation where —¢ is true. Formally this is defined as:
PossAtRisk(¢) =4er EF(—¢)
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Safe: a proposition ¢ is said to be safe if it will always be true in the future.
Formally we have:
Safe(y) =aey AF(p)

On believing on the above, and the propositions being either fundamental
desires or only desires, the agent distinguishes between three types of conditions
for activating emotions:

1. Threats: a threat is a condition of the environment in which a fundamen-
tal desire is in imminent risk of failure. We consider the following kinds of
threats:

— a fundamental desire ¢ is said to be threatened if the agent believes that
p is at risk:

Threatened(y) =40 Bel(AtRisk(y)) A Fund(yp)

— a fundamental desire ¢ is said to be threatened by a proposition v if the
agent believes that the truth of ¥ implies ¢ being at risk:
ThreatProp(¢, ¢) =qe¢ Bel(¥» — AtRisk(p)) A Fund(y)

— a fundamental desire ¢ is said to be threatened by the execution of an
action a if the agent believes that the successful execution of a will put
o at risk:

ThreatAct(a, ¢) =aqcs Bel({a)AtRisk(p)) AFund(p) ThreatsEffC(a, ¢) =gy
Bel(—EffCap(a) — AtRisk({a)¢)) A Fund(y)

2. Not favourable: a condition is not favourable if it reveals a possible failure
of one of the agent’s desires, in the future. As in the case of the threats, we
consider the following kinds of not favourable conditions:

— NotFavourable(y) =45 Bel(PossAtRisk(y)) A Des(y)

— NotFavourableProp(vy), ) =4e¢ Bel(1) — PossAtRisk(y)) A Des(y)

— NotFavourableAct(a, ¢) =g4ey Bel({c)PossAtRisk(¢)) A Des(p)
Note that here we consider regular actions instead of atomic ones since the
risk condition is not bounded to verify in a next situation.

3. Favourable: a condition is said to be favourable if it refers to a current sit-
uation of the environment in which a desire of the agent has the possibility
to be achieved. We define the following kinds of favourable conditions:

— Favourable(y) =405 Bel(Safe(y¢)) A Des(yp)
— FavourableProp(y, 1) =45 Bel(y) — Safe(y)) A Des(y)
— FavorableAct(a, ) =qcs Bel({a)Safe(p)) A Des(y)

4 Modelling Emotions in £gp,

In this section we present the modelling of three emotions within Egp; logic:
Fear, Anziety and Self-Confidence. For each of these emotions we model both
its activation conditions and the effects that their presence have in the future
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behaviour of an Emotional-BDI agent. This modelling is based in the work of
Oliveira & Sarmento in [4].

The activation condition of each of the emotions corresponds precisely to a
condition defined in the previous section. We opted by this approach to avoid the
logical omniscience problem [I7]. The use of a notation Emotion(F(p)) allows
a more intuitive meaning and can help in the future development of a formal
calculus for (emotional) Egpj-formulae.

4.1 Fear

The activation of fear occurs when a fundamental desire of the agent is put at
risk of failure. Using other words, fear is activated when the agent detects a
threat. Therefore we have the following kinds of fear:

~ Fear(—¢) = Threatened(yp)
— Fear(y) — —¢) = ThreatsProp(, ©)
- Fear(<a>—\(p) = ThreatsAct(a,gO)

The main effect of fear is bringing the agent into a cautious perspective towards
the environment and, in particular, to the threat he detected. Depending on
the kind of threat, the agent will aim at avoiding that threat. We consider the
following behaviours under the effect of fear:

— if the agent can avoid a threat through the execution of an action a the he
intends to execute it:

Fear(—p) A Can(a, ¢) — Int({a)p)

— if the agent cannot avoid the threat through an action a then he does not
intend to execute it:

Fear(—p) A Cannot(a, ¢) — —Int({a)p)

— if the agent can avoid a proposition which is a threat, or can make the
proposition and the fundamental desire coexist — both through the execution
of an action — then the agent intends to execute that action:

Fear(y) — =) A Can(a, 7)) — Int({a)—))
Fear(¢) — =¢) A Can(a, 9 A ) — Int((a) (¥ A ¢))

— if the execution of an action is a threat to the agent then the agent will
not intend to execute it (possibly for achieving some proposition ) until it
causes no fear:

Fear((a)—¢) — A(=Int({(a) T)U—Fear({(a)y))

— if the agent believes that an action a for which it does not have resources

can eliminate the threat, then one of the following conditions apply:

1. the agent can eliminate the fear by freeing previously saved resources to
execute other action:
Fear(—¢) A Cannot(a, ¢) A Bel([FREE(«v)]Can(a, ¢)) — Int((FREE(a); a)y)
2. the agent believes it can get the resources for a before compromising its
fundamental desire:
Fear(—¢) A Cannot(a, ») A Bel([GET(a)]Can(a, ¢)) — Int((GET(c); a)¢)
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4.2 Anxiety

The activation of anxiety occurs when the desires of the agent can be at risk
in the future. Therefore, anxiety works as preventive alert system towards fu-
ture situations which may compromise the overall performance of the agent. We
consider the following kinds of anxiety activation:

— Anx(EF—¢) = NotFavourable(y)
— Anx(¢) — EF—) = NotFavourableProp(v, )
— Anx({«)EF—¢) = NotFavourableAct(«, ¢)

The effects of anxiety are mainly preparing the agent to face future risk condi-
tions, or to avoid them before they occur. We consider the following cases:

— if an action o guarantees that the desire will not be at risk, the agent intends
to execute «. If he does not have enough resources, he will save them:
Anx(EF—¢) A Can(a, AFp) — Int({a)AFyp)

Anx(EF—¢) A Int({a)AFp) A —=Res(a) — (SAVE(«))Int({c)AFy)

— if a proposition causes anxiety and the agent has a way to either negate that
proposition or make that proposition coexist with the desire possibly at risk,
then the agent will execute that action:

Anx(t) — EF—) A Can(a, AF(=16 V (1 A ) — Int((@)AF(= V (4 A ¢)))

— if the execution of an action is causing anxiety and the execution of that
action is an intention of the agent, the agent will not intend it until it becomes
harmful:

Anx({a)EF—p) A Int({a)p) — AX(A(=Int({a)@)UBel(AFp)))

4.3 Self-confidence

Self-confidence represents the well-being of the agent relatively to the future
achievement of one of its desires. Using other words, if a desire is in a favourable
condition to be achieved, the agent feels self-confidence about its achievement.
We consider the following kinds of self-confidence:

— SConf(y) = Favourable(p)
— Sconf(¢) — ¢) = FavourableProp(v, ¢)
— SConf({a)p) = FavourableAct(c, )

Self-confidence deals mostly with the maintainance of intentions. Since the de-
sires are considered to be achievable, the agent only cares about maintaining
them in the set of intentions until he believes he achieved them. We consider the
following kinds of behaviour:

— if the agent already intends a desire to which he is self-confident about, the
agent will continue to intend it until he believes it is achieved:
SConf () A Int({a)p) — A(Int({a)p)UBel(¢))

— if the agent still does not intend the desire, he will begin to intend it from
the next situation on:
SConf () A Can(a, ) A =Int({a)p) — AXInt({a)p)



78 D. Pereira, E. Oliveira, and N. Moreira

— if a proposition causes self-confidence about a desire, then the agent will
start intending that proposition and also intend both the proposition and
the desire itself:

SConf() — @) A Can(a,9) A —Int({a)p) — AXInt({a)p)
SConf(p — @) — Int(y) A p)

— if the agent has the resources needed to execute an action which will guaran-
tee the achievement of a desire to which it is self-confident about, then the
agent will free those resources and intend to get them right before executing
the action:

SConf({a)p) A Int({a)¢) A Saved(a) — (FREE(«))Int({GET(a); a)¢p)

4.4 Usability of &gp

The main goal behind the development of Egp) was to provide a language ex-
pressive enough to specify conditions where emotions are triggered and the effect
that the presence of such emotions have in the behaviour of the agent. The for-
mulas we presented in the Sections [4.1] and are not supposed to be all
present but rather combined to fit the special needs of the environment and role
of the agent. This combination should define the emotional state of the agent.
This mental state works on top of the properties already present in the BDI
logic.

Lets consider a scenario where a fire-fighter agent is fighting a nearby fire. It
is acceptable that the agent may fear of being burned, although believing that
he can extinguish the fire. The emotional state would contain:

1. Fear(—healthy)
2. SConf(extinguished fire)

The result of this emotional state could be getting back to protect from very
close fire but still continuing to throw it water, which is formalised as:

1. Fear(—healthy) A Can(get back,healthy) — Int((get back))healthy
2. A(Int((through wateryextinguished)UBel(extinguished))

We could select different conditions to model for instance another fire-fighter
agent fighting the fire, a police agent, etc.

5 Implementation

We have implemented the tableau algorithm presented in Section 2.3 for deter-
mining the satisfiability of Egp|-formulas. Our implementation was done in the
Prolog language. Currently we are implementing Egpj syntax and semantics as a
module of the Coq interactive theorem prover system [I8]. Our aim is to provide
a computational mean of doing model-checking for Egpj-formulae. We base our
approach in the work of de Wind [19] in implementing normal modal logic in
Coq plus some implementations of formal concepts present in the Egpy logic and
already implemented in Coq, as CTL logic.
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6 Related Work

The work which more relates to the one we present in this paper is the one of
Meyer in [20], where he proposes the formal modelling of happiness, sadness,
anger and fear in the KARO logical framework.

Meyer suggests the introduction of a modal operator Goal,,(¢) which repre-
sents a so called maintainance goal. This modal operator is used to model fear
with a similar intuition as the one behind our Fund(p) modal operator, i.e., to
define a more important kind of desire. In terms of modelling the evolution of the
agent, Meyer uses computational sequences of atomic actions to refer to future
states of an agent, while we use the standard CTL’s temporal operators.

In a more recent work, Meyer and Dastani introduce the modelling of emotions
previously done in an agent oriented programming language [21]. In this work
the authors present transition rules for the generation of each of the emotions
modelled in [20]. This generated emotions are then feed into the programming
language’s deliberation process which determine the effects that these emotions
have in the mental states of an agent.

Comparing both approaches we conclude that:

1. Our approach provides a more expressive language to model emotions in
BDI agents. The combination of time and action execution and the detailed
definition of resources and resource-management notions fits in the needs of
emotional agent architecture [3TI2].

2. The new operators which we introduced were conveniently defined syntacti-
cally and semantically. The work of Meyer introduces similar concepts but
just in the language of its logic. Our work also has a strong focus on the
logical foundations of Egp; whereas Meyer’s work focus only in expressing
emotional states of rational agents.

Despite the differences, both logical frameworks try to model rational agents
with emotions in the same context: they are not interested about the internal
structure of the emotions, but only in specifying at which conditions they are
activated and how their presence influence the behaviour of the agent.

7 Conclusions and Future Work

In this paper we have presented an improved version of the Egp; logic to model
the activation and effects of emotions in the behaviour exhibited by a Emotional-
BDI agent. The emotions analysed were fear, anxiety and self-confidence. This
formalisation was based in the BDIct logic, which was extended with the notions
of fundamental desire, explicit reference to actions, capabilities and resources.

We have shown that the satisfiability of Egpj-formulae can be reduced to the
satisfiability of BDlct-formulae. We have implemented an extended version of
the BDlct’s tableau decision procedure for Egpj-formulae.

Currently we are developing a library for the Coq interactive theorem prover
system [I8] with the purposes of reasoning and model-checking specifications of
Emotional-BDI agents within the Egp framework.



80

D. Pereira, E. Oliveira, and N. Moreira

As a future work, it would be interesting to add a notion of graded importance

to the Fund modal operator in order to provide a more accurate notion of the
importance of a desire to the decision-making process of an agent, in the line of
the work done by Godo et al. in [22].
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Abstract. We study a logical property that concerns the preservation
of future directed obligations that have not been fulfilled yet. We call this
property 'propagation property’. The goal is to define a combination of
temporal and deontic logics which satisfies this property. Our starting
point is the product of temporal and deontic logics. We investigate some
modifications of the semantics of the product in order to satisfy the
propagation property, without losing too much of the basic properties of
the product. We arrive at a semantics in which we only consider ideal
histories that share the same past as the current one, and that enables an
interesting characterization of the states in which obligations propagate:
these are the states where there are no violations of present directed
obligations.

1 Introduction

A strong intuition concerning the interaction of deontic and temporal modalities
is that an obligation to achieve something in the future should propagate to
future moments if it is not met presently. This is particularly true for deadline
obligations; if I have to finish my paper before the end of the week, and I do not
finish it today, tomorrow I still have to finish it before the end of the week. But,
the propagation property also pertains to future directed obligations without a
deadline: if today I need to give a party someday, and I do not give the party
today, then tomorrow I still have to give the party someday.

We want to emphasize that such properties are only valid if we assume that the
‘deontic realm’ is not changed by an explicit update of the norms that construct
it. What we call the ‘deontic realm’ is relative to the actual situation and to
an external body of norms that determines what the obligations of the agent
in the given situation are (e.g. a lawbook, or some other set of rules the agents
have to comply to). If we allowed the body of norms to vary, the propagation
property would not hold. For instance, to come back to the above mentioned
examples, there may be an unexpected extension of the deadline for the paper,
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or my friends have waited in vain for too long and no longer demand that I give
the party. This means that I no longer have to finish the paper before the end
of the week, and, that I no longer have to organize the party. In such cases, the
preservation of the original obligations is not prolonged, due to a change of the
norms, and accordingly, a change of the deontic realm. In this paper we will not
be concerned with these explicit updates of the norms; we only consider logical
properties for the case where the norms are settled, and where it makes sense
to reason about the preservation and propagation of the resulting obligations on
the basis of what actually happens. So, the only changes of the deontic realm
we consider are the ones due to changes of the situation.

The problem of propagation of obligations is an instance of the more general
problem of the interaction of 'what is obligatory’ with 'what is actually the case’.
In deontic logic such interactions are only considered sporadically. For instance,
in SDL [I8], we do not have the interaction property O(p V ) A =p = O(1)),
although it might be considered quite reasonable: if I have to be smart or strong,
and in fact I am not strong, I have to be smart. A possible ground for not wanting
this property is that in combination with 'weakening’, that is O () = O(p V),
which is valid in SDL, we get that O(p) A ~p = O(¢). Thus by the combina-
tion of weakening and the proposed interaction of obligations with conditions
being settled, we get that when there is a violation, everything is obligatory.
Then, two reactions are possible: (1) indeed this property is bad, and we have to
see what we can do to avoid it (while keeping the interaction with facts, in which
we are interested), or (2) maybe this property is not as bad as it seems. Below
we elaborate on both reactions.

If we want to avoid O(p) A = = O(v) the obvious choice would be to
attack weakening. Ross’ famous paradox [I7] indeed questions this property.
Ross’ paradox just says that O(p) = O(p V 1) is not intuitive under some
readings. For instance, being obliged to post a letter does not imply being obliged
to post or burn it. But many deontic logicians (see e.g., [I1]) have argued that
the paradox is due to a naive interpretation of the formula. If we read O(¢p)
properly as '¢ is a necessary condition of any state that is optimal according to
ones obligations’, then the property poses no problems. Another way to say this
is that O(y) expresses an ‘at least’ reading of what is obligatory: it is obligatory
to at least satisfy ¢, but maybe other properties also have to be obligatory at
the same time.

Another way to avoid O(p) A —¢ = O(v) is to refine the interaction between
'what is obligatory’ with *what is actually the case’, i.e., to specialise the interac-
tion property O(pVi)A—¢@ = O(1). Our point is to consider that what happens
today can only have an effect on what will be obligatory tomorrow, and not on
what is obligatory today. We follow the idea that one time step is needed so that
the deontic realm takes into account what happens. According to this reading, if
I have to be smart or strong today, then the fact I am in one of the four possible
situations (strong and smart, strong and not smart, etc.) does not change my
obligation to be either smart or strong. In one of these situations (neither strong
nor smart) the obligation is violated, while it is fulfilled in the other ones. On
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the other hand, things change in a temporal context. Indeed, if I have the oblig-
ation to be in Paris today or in Amsterdam tomorrow, then the obligation I will
have tomorrow will depend on what I do today: if I am not in Paris today, then
tomorrow I will have the obligation to be in Amsterdam, otherwise I will not.
(Whether I am in Paris or not today, today’s obligation does not change, only
tomorrow’s obligation does.) It is closely related to the fact that an obligation
only concerns the present or the future: an obligation that yesterday I was in
Paris does not make sense. Thus, in case I am not in Paris today, tomorrow’s
obligation will not be 'to be in Amsterdam or to have been in Paris yesterday’
but simply ’to be in Amsterdam’. So in this paper the interaction property we
will consider is not O(p V ) A~ = O()) but O(¢e V X¢) A o = X O(v),
and we will call it propagation property.

As a further motivation for this work we will first point to some related prob-
lems. Preservation properties have been studied for intentions. However, inten-
tions are preserved for a different reason. As Bratman [34] explains, intentions
serve to stabilize an agent’s deliberations. An agent cannot continuously recon-
sider his decisions, simply because usually there is no time to do that. It is
usually more rational to stick to reached decisions (thereby turning them into
intentions), and to only let achievement of that what is intended be a cause for
discharging the obligation. In AI (that is, Al as studied in computer science),
the best-known formalizations of rationality postulates for the phenomenon of
intention preservation are Rao and Georgeff’s ’commitment strategies’ [I5]. For
obligations, the reason to preserve them is different: they are preserved simply
because an agent has to meet up to his obligations at some point, unless, of
course, he is explicitly relieved from his obligations. But, as said, we do not con-
sider that issue in this paper. Another motivating example is the preservation of
goals in the mechanisms underlying agent programming languages like AgentS-
peak [I6] and 3APL [T28]. Such agent programming languages usually comprise
programming rules that work on data structures for beliefs, plans and goals.
The goals in the ’goal bases’ of agent programs are often sets of propositional
formulas denoting properties the agent aims at making true. The operational
semantics of the programming languages typically treats the goals in the goal
bases as information that has to be preserved unless a state is reached where
the agent believes the goal is achieved. Of course, goals are not identical to
obligations. But it is clear that they at least share the phenomenon of propa-
gation. One of the motivations is thus to provide a logical basis for verification
of agent programs against logically formulated rationality postulates about the
propagation of goals and obligations.

The present paper is organised as follows. Section [ presents the product
of Linear Temporal Logic (LTL) [I4] and Standard Deontic Logic (SDL) [18],
which is an appropriate starting point for our investigation. Section [3] shows
that the propagation property is not compatible with the genuine product and
presents modifications of the product semantics which guarantee the propagation
of obligations. Section [l concludes the paper.
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2 Product of Temporal and Deontic Logic

We present here standard deontic logic SDL [18], linear temporal logic LTL
[14], and their product logic LT'L x SDL. We choose the product as the starting
point because the commutativity properties, which are specific for products, cor-
respond to a setting without norm updates. As we explained in the introduction
we are not interested in explicit updates here.

2.1 Deontic and Temporal Logics

Deontic logic is the modal logic of obligation, permission, and prohibition.

Definition 1 (Deontic language). The deontic language DL is defined as
DL:=P| 1L |DL=DL|OMDL)

The necessity operator O is read it is obligatory that. The possibility operator

P ~0- is read it is permitted that. We can read O(—¢p) as it is prohibited

that .

The boolean operators are defined as usual:

Yol TY-1 v v piae ™ (o1 = )

The truth-relation = between a world of a Kripke model and a formula is
given through the usual possible world semantics, with which we consider the
reader is familiar. Standard Deontic Logic SDL can be defined as the logic over
the language DL determined by the Kripke frames (W, R) such that R is serial,
i.e. as the set of the DL-formulas that are valid in every frame (W, R) such that
R is serial. In a deontic frame, W is the set of the worlds, and the intuitive
reading of R is that it associates each world with a set of ideal worlds, in which
every obligation is fulfilled.

Definition 2 (Temporal language). We consider a monadic operator X
called next, and a dyadic operator U called until. Given a set P of atomic
propositions, the temporal language T L is defined as

TLu=P|L|TL=TL|XTL|TLU TL

The informal meaning of the temporal operators X and U are as follows:
Xp: “at the next moment, ¢ will hold.”

w1 U pa: “pg will eventually hold at some moment m, while ¢; holds from now
until the moment before m.”

The temporal operators F (finally, or eventually), G (globally, or always) and
F<j; (before k time units) are defined as the following abbreviations (the boolean
operators are defined as for DL):

def def

le, le; def [@if k=0
Fo=TUp Go = F-p Fgw—{vang_welse
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Definition 3 (Linear temporal structure and model). We consider here
a linear, infinite, and discrete time. The unique temporal frame is (N, <) where

— N is the set of the natural numbers.
— < is the usual strict order on the natural numbers.

Given a set of atomic propositions P, a temporal valuation V is a function
V : N — 2P which associates each state with a set of atomic propositions.

Let us define the satisfaction relation between a state of a model and a temporal
formula.

Definition 4 (Satisfaction). Given a set of atomic propositions P, a temporal
valuation V', a moment i € N, and a formula ¢ of TL, the satisfaction relation
= is defined by induction on ¢ as follows:

iEDp iff pe V(i) where p € P
1L

iEpi=pa Uff if iEp1 then iE s
i X ff i+l

iEei Uy iff 3 >i suchthat i’ =y and
Vi"eN if i<i’<i then i ¢

The logic formulated in the language 7 £ which is determined by the unique
frame (N, <) is called LT'L (Linear Temporal Logic)[14].

2.2 Temporal and Deontic Product

We define here the product of temporal and deontic logics. The product frames
correspond to the usual product definition [I0] (see figure [l for an illustration).

W,R

Wy . . ° o

WL <: . <: ST

WO \\\:\ /\ Rd
& N, <

o 1 2 --

Fig. 1. Illustration of the product (N, <) x (W, R)

Definition 5 (Product frame, product model). Let T = (N, <) and D =
(W, R) be respectively a temporal frame and a deontic frame. Then the product
frame T x D is a triple (S, <¢, Rq) where
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— S =NxW (the set of the states) is the Cartesian product of the set N of the
natural numbers, viewed as a set of moments, and the set W of the worlds,

— <;C S x S is the temporal relation on states such that (i,w) <; (i',w") if
and only if i < i’ and w = w’,

— R4 C S xS is the deontic relation on the states such that (i,w)Rq(i',w’) if
and only if wRw' and i = i'. We then say that w' is an ideal world of w at
moment i, or that (i,w") is an ideal state of (i,w).

Given a set P of atomic propositions, a valuation V' for T x D is a function
V : S — 2P that associates each state with a set of atomic propositions. The pair
(T x D,V) is then called a product model based on T x D.

The language of the product logic LT L x SDL combines LT L operators and
SDL operator.

Definition 6 (Syntax of LTL x SDL). Given a countable set P of atomic
propositions, the temporal deontic language TDL of LTL x SDL is defined by:

TDL:=P | L | TDL=TDL | X(TDL) | TDL U TDL | O(TDL)

Usual boolean and temporal operators defined as abbreviations in the definition
of temporal and deontic languages (definitions [ and [@ respectively) are also
available.

We can now define the satisfaction relation for the deontic and temporal product
logic.

Definition 7 (Satisfaction). A formula ¢ of TDL is interpreted on a state of
a product model. Given a product model ((S, <¢, Rq),V), a state s = (i,w) € S,
and a formula @, we can define the satisfaction relation = by induction on :

sEXe iff (i+1,w)lE@ where s=(i,w)
sEpiUws iff 3’ >ts such that s E v and

Vs" € S if s<p 8" <, 8 then s" 1
where “<; 7 is defined by s <8 iff s<¢8 or s=¢

s E Op iff vseS if  sRgs then s Ee

A product model (W, <y, Rq), V') satisfies a formula ¢ if every state of the prod-
uct satisfies it.

A product frame F = (W, <y, Rq) validates a formula ¢ if every model based
on F satisfies it.

A formula ¢ is valid if every product frame validates it.

Let us elaborate on the interaction of the temporal and deontic dimensions.
For instance, there is no difference between “it is permitted that ¢ holds to-
morrow”, and “tomorrow, ¢ will be permitted”. This corresponds to the valid-
ity of P(X¢) < XPo. Indeed, let s = (i,w) € W be a state. Suppose that
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s = P(X ). Then there is a state s’ = (', w’) such that sRys’ and s’ = X¢. So
(i+ 1,w") E . And thus (i + 1,w) = Py. So we can deduce s = X Py. In the
same way, we can show that = X Py = PX. Then,

EPXp & XPy

This property can also be formulated as follows
EOXyp & XO0p (1)

The above commutativity properties are typical for product logics. The prop-
erties reflect the fact the deontic realm is not updated, as we said in the intro-
duction. So, if it is obligatory to go to Paris tomorrow, then tomorrow it will be
obligatory to go to Paris immediately, and vice versa. Now the question of the
next section is whether or not we can add propagation properties to the temporal
deontic product while leaving the product intact: is there a non-empty (and in-
teresting) subset of the product frames which validate the propagation property?
Intuitively, this should not be the case: propagation means that obligations are
‘created’ for future moments. The trigger for this creation is the circumstance
that the obligations are not met presently.

3 Adding a Propagation Property

We want to consider a propagation property as general as possible. For instance
we want to capture the obligation with deadline, or the obligation to meet some-
thing eventually (without deadline). The obligation to satisfy ¢ now, or ¢ next
seems to be the most general kind of obligation for which we want to study the
propagation. Indeed, the obligation with deadline O(F¢j(¢)) can be re-written
O(p VvV XF¢i_1(p)), and the obligation to satisfy ¢ eventually O(F¢) can be
re-written O(p V XF(p)).

As a first attempt for formalizing a propagation property to be added to the
product logic, we consider:

O(pVXYp)N=p = XO() (2)

If it is obligatory to meet ¢ now, or v next, and ¢ is not satisfied now, then it
will be obligatory next to meet 1.

As argued in the introduction, we would not want that from the propaga-
tion property and the properties of the temporal deontic logic it follows that
Op AN~ = XO(v). Yet this property does follow from Pl in combination
with (a temporal variant of) weakening of obligations: Op = O(p vV X1)). To
solve this problem, we re-formalize the propagation property, in order to prevent
that in combination with temporal weakening it can be used to derive this un-
wanted property. To achieve this, in the propagation property, we exclude that
O(pV X)) holds only because O(ip) holddl, and we thus arrive at the following
property instead of (2I):

O(pV XY)AN=0pA—p = XO() (3)

1 Another strategy might be to attack the temporal weakening property directly.
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Similarly, we may explicitly exclude that O(¢ V X)) holds only because
O(X1) holds. So we may formulate the propagation formula as follows:

O(eVXP)AN-OpAN-O0OXpAN—-p = XOW) (4)

However, with the product property X O¢ « OX p, property [l is equivalent
with O(¢V X¢) A=0p A—=0X) A —p = OX. This, in turn, is logically
equivalent with O(¢p V X)) A=Op A~ = OX1), which is exactly the same
property as[Bl So, in the product setting, properties [}l and d] are equivalent.

But, now we have to conclude that the propagation property is not compatible
with a genuine product: we can consistently add property 3 to the product logic,
but we will never have a case where X O(¢)) is really a consequence of O(p V
X)A=0p A—p being true. In fact, a product model satisfies property @ only if
it does not satisfy the hypothesis O(pV X)) A=0(p) A= O (X)) A—p. (Indeed,
if a product model satisfied the hypothesis O(pV XY)A=0(p) A=0 (X)) A -,
in some state s, for some ¢ and v, then we could deduce =X O(v) in s.) This
corresponds to a product model where all the ideal states of a given state have
the same valuation, which is clearly not interesting to work with.

The only way to preserve the propagation property is then to drop the ‘no
learning’ property X O¢p = O X . So, we will no longer have a genuine product.
But this is in accordance with intuitions. Obligations may now be transferred
to future states. The above discussion shows that this is incompatible with a
product; we have to allow some dynamics in the deontic dimensions because
obligations may be inherited from earlier states. We do however preserve the
‘perfect recall’ property OXp = X Op that expresses that no obligations are
‘forgotten’ over time. Note that this last property is sufficient to ensure that
properties [3 and [@] are equivalent. So, in the rest of the paper, we will study
property Bl which is shorter.

3.1 Restricting the Ideal States

Our goal in this section will be to define a semantics that satisfies the propagation
property and the perfect recall property. To account for propagation, in the
semantics we have to introduce a stronger interaction between what happens
and what is obligatory, i.e., between what is true in the current world and what
is true in the (next) ideal worlds. If we want to satisfy the perfect recall property,
the set of ideal worlds in the next state is a subset of the set of the ideal worlds
in the current state. The principle of propagation then should point us to what
subset to take. Our idea is that for ideal worlds at a next moment we should
only take into account the worlds that share the same past as the current world
until the present moment. This reflects the idea that what is deontically ideal at
the next moment depends on what actually occurs presently.

Below, we first define the predicate SamePast(s, s’) which says that the states
s and s’ of a temporal deontic model share the same past:

SamePast((i,w), (i",w')) < =i AVj<i V(w) =V(uw)
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When interpreting an obligation in a state s, we only consider the states s’ which
satisfy sR4s’ and SamePast(s,s).

Definition 8 (Semantics of the obligation (2)). Given a product model
(S, <, Ra), a state s, and a formula ¢, we now consider the following semantics
for obligation:

sEO¢ iff Vs'eS if (SamePast(s';s) and sRgs') then s ¢

With this new semantics, the deontic realm is described by fewer and fewer
worlds (which means that more and more formulas are obligatory) when time
passes. This is conform the fact that we keep O(X¢) = X O(yp), and avoid
X O(p) = O(Xyp); no obligations are forgotten, but some obligations may ap-
pear (in particular when they are propagated from a more general obligation in
the previous state).

W3 O o o o o— — —
@ \ ( 0 j ( {M}j 00

W O o o o oY — —
@) / o/ /) )

Wy O S S o o— — —
w W @ @ D
o s s s 0 —— —

o @ 0 w0
0 1 2 3 4

Fig. 2. Semantics of obligation

Let us illustrate, by the way of an example, how an obligation may propagate.
Consider the product model illustrated in Figure 2l where, in state (0, wg), histo-
ries wy, wg, and ws, are ideal. Then, we have for instance 0,wy = O (pV X Xp) A
—p. Since wy does not satisfy p at instant 0, the history w; which satisfies p at
instant 0 is not ideal anymore at the next instant. So, only we and ws (which
satisfy X Xp at instant 0) remain ideal at instant 1. Thus, the propagation ap-
plies, and we have 0, wg = X O(Xp). Let us now state the propagation property
and propose a proof in the general case where ¢ is a propositional formula and
1 can be any formula.

Property 1 (Propagation property). Let M be a temporal deontic product model.
Then it satisfies the propagation property for the obligation operator of defini-
tion

ME O@pVXY)A=0(p) A~ = XO(¥)

for ¢ propositional formula, and ¢ any formula.
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Proof. Let M = ((S, <¢, Rq), V) be a temporal deontic model, and s = (i,w) € S
a state such that s | O(@VXY)A—-0 (p)A—p. Every s’ such that SamePast(s, )
and sRgs’ satisfies ¢ V X1, and it is not the case that every such s’ satisfies
©. If some of these states s’ = (i, w’) have the same valuation as s, then they
satisfy —p (since s E —¢), and ¢ V X1. So, they satisfy X. Thus, for every
state (i +1,w’) which is ideal from (i 4+ 1, w) and has the same past as (i + 1, w)
satisfies ¢, i.e., (i + 1,w) | Ov. Otherwise (if none of the states s’ have the
same valuation as s), there is no ideal state having the same past as (i + 1, w).
So, every formula is obligatory in (i + 1, w). In particular, (i +1,w) = Oy. O

The fact that ¢ is a propositional formula in accordance with intuition. Indeed,
the propagation property expresses that what will be obligatory at the next step
may depend on what happens now ( not being true). So it is natural to consider
that ¢ is a formula which only concerns the present moment, i.e. a propositional
formula. Otherwise, if ¢ contained future operators, what will be obligatory at
the next step would depend on something which has not happened yet.

So we have that some of the obligations that may appear at a next state are
due to the propagation property. In fact, the following property claims that the
propagation property completely characterizes the new obligations that appear.

Property 2 (Characterization of new obligations). For any formula v, if in a state
s both the formulas X O () and =0 (X)) hold, then there exists a propositional
formula ¢ such that

s O(pVXY)A—p

So, if there will be next an obligation to satisfy 1 and if this obligation is
new (i.e., now, there is no obligation to meet ¥ next), then it is due to a current
obligation to satisfy ¢ V X1 where ¢ is propositional and not fulfilled.

Proof. Let 1 a formula and s a state such that s = X O()) A ~O(X1). Let E
the set of the ideal states of s which do not satisfy X:

fo= {s' €S/ sRs" and s’ = =X}

We now define the set V(E) of all the valuations of states in E. This set is finite

(even if E is infinite) because it belongs to 22" . V(E) s {V(s) / s € E}. Then

we define the propositional formula

o=\ (N\e A A\

veV(E) pEv p¢v

Then every ideal state of s either satisfies X4 or is in E and satisfies . So
5= O(pV Xv).

Moreover, since s = X O(v), the states in F - which do not satisfy X1
- become not ideal at the next step. So they do not share the same atomic
propositions with s. Thus s | —¢. a
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Unfortunately, not everything is fine. In particular, the deontically ideal worlds
may shrink to the empty set when time passes, as we saw in the proof of prop-
erty I This conflicts with our desire to stay in accordance with SDL where
obligations are always consistent: =0 L. Another formulation is the D axiom:
Oy = Py. Then, if from a state s, there is no ideal state with the same past,
these properties cannot be satisfied, and every formula is obligatory in s, includ-
ing s = O_L. In particular this occurs if there is a violation of a proposition p in
a state s = (i, w), i.e., if s = p A O(—p). In this case no ideal state is associated
with (i 4+ 1, w).

Property 3. With the new semantics of the obligation, the D axiom is not valid:
F-0(1) and EF Op = Py for any formula ¢

Proof. The problem is due to the fact that there may be states without any ideal
states with the same past. Indeed, let ((S, <4, Rq), V') be a product model, and
s € S a state such that no other state has the same past as s. (It is easy to build
such a model.) Then, according to definition[§, s = L, which invalidates the D
axiom. o

As a solution to this problem, we might consider to add a constraint on the
models expressing that from every state there exists an ideal state with the
same past.

Definition 9 (Ideal existence constraint on models). Let M = ((S, <q4,
Ry), V) be a temporal deontic product model. We say that M satisfies the ideal
existence constraint if

VseS 3s'e€ S suchthat sRys' and SamePast(s,s")
This constraint now guarantees validity of the D-axiom.

Property 4 (D aziom). Let M be a temporal deontic product model that satisfies
the ideal existence constraint. Then

M E-0OL orequivalently M E Op = Pyp
for any formula ¢.

Proof. Let M = ((S,<4,Rq),V) be a temporal deontic product model that
satisfies the ideal existence constraint, and s € S a state. From definition [0 we

have that there exists an ideal state s’ with the same past as s. So, from the
definition of obligation (definition {)), s = —O(L). O

However, again we have to face a problem: the ideal existence constraint interacts
with the identical past criterion in an undesirable way. In particular, if there is
a simple obligation Op that is violated in the current world, the identical past
criterion demands that all ideal next worlds satisfy —p in their previous state.
However, of these there can be none, since otherwise we would not have had Op.
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But then, under the identical past criterion, there can be no ideal next worlds
as soon as there is a simple obligation Op that is violated presently. But then
this directly conflicts with the ideal existence constraint. So, if in our logic, we
impose both properties, we actually get that obligations can never be violated.

Property 5 (No violation). Let M be a model satisfying the ideal existence con-
straint and ¢ a formula. Then M = (o A O(—p)).

The conclusion has to be that we still have to refine the semantics: the violation
of obligations should be possible, without losing the interaction between what
happens and the deontic realm.

3.2 Levels of Deontic Ideality

Another way to view the problem of the previous section is to say that the
semantics should be able to deal with ‘contrary to duty’ (CTD) situations. In
states where there is a violation, something happens that is contrary to what is
obligatory for that state. It should not be the case that such situations cause the
deontic realm to collapse. So when there is a violation, it should still be possible
to point out what is obligatory and what not, despite of the violation in the
present state.

We look for a solution to the problem by switching to levels of ideality. Rather
than an accessibility relation which gives the ideal states, we consider a preference
relation <4, where s <4 s’ means that the state s’ is “better” than the state s.
This allows us to have several “levels of ideality”. The ideal states will be the best
states among those which share the same past as the current state. The idea is
now that if a state (i, w) violates an obligation of a propositional formula then
the ideal states of (¢ + 1, w) are states which were not ideal for (7, w): the deontic
realm thus switches to a lower level of ideality. This contrasts with the setting of
the previous section, where in this case there would be no ideal states left.

Definition 10 (Temporal deontic frame and model). A temporal deontic
frame (S, <, <q) is defined as the product (N, <)X (W, <pres) of a temporal frame
(N, <) and a deontic frame (W, <prey), where <pref, considered as a preference
relation, is a total quasi-order (total and transitive relation) on W.

A temporal deontic model is defined as a product model based on a temporal
deontic frame.

For the temporal and boolean operators the satisfaction relation is defined as
above. For the obligation operator it is defined as follows.

Definition 11 (Semantics of the obligation (3)). Given a temporal deontic
model ((S,<¢,<aq), V), and a state s € S, ¢ is obligatory if there is a state with
the same past as s such that every “better” state with the same past satisfies ¢.

sEO¢ iff 3s'€S suchthat SamePast(s,s’) and
and Vs" €S if (SamePast(s,s")Ns' <qs") then s =
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Remark 1. If every set of states has at least one maximum element for the quasi-
order <q4 (i.e., the relation >4, defined by s >4 s’ iff s' <4 s, is a well-quasi-order),
then we can define the set of the best states among those having the same past:

BestSamePast(s) = {s' € S/ SamePast(s,s’) and
Vs e S if SamePast(s,s”) then s’ <45’}

And the semantic definition of O(p) becomes more simple:
sk Op iff Vs € BestSamePast(s) s ¢

For the newly defined models (definition [I0) with levels of ideality, there is no
need for a constraint to guarantee the validity of the D axiom. Indeed, the
existence of a state with the same past is guaranteed by the current state itself.
Thus the existence of ideal states is also guaranteed. (Recall that the ideal states
are the best among those which share the same past as the current state.) So
the D axiom is valid and violations can be satisfied.

However, there still is a phenomenon that has to be considered more closely.
When an obligation of a proposition p is violated in a state (i, w), then the ideal
states at the step i+ 1 are completely disjoint from the ideal states at the step .
This is easy to see: if (i, w) = =pA Op, then all the ideal states of (i, w) satisfy p.
On the other hand, the ideal states of (i + 1, w) have the same past as (i + 1, w),
and thus they are states (i + 1,w’) such that (i, w’) does not satisfy p. So none
of the ideal worlds of (¢, w) are ideal for (i + 1,w) and vice versa. The problem
is now that in such states, the propagation property is not guaranteed anymore
because of the change to a completely different set of lower level ideal worlds.

Actually, the condition that makes the set of ideal worlds change between
(i, w) and (i + 1,w) is a little more general than suggested by the example with
the violation of an atomic proposition. More in general, the condition concerns
the violation of an obligation for any propositional formula which can be seen
as an immediate obligation, that is, any propositional formula concerning the
present moment. So, if such an obligation is violated, the current ideal worlds
will not be considered as ideal in the future. The current norms become obsolete,
and we switch to the norms of a lower level. If not, we have a strong link between
what is obligatory now and next, and the propagation property holds.

To characterize these two kinds of states, we define the condition
IdealSameProp(s) on a state s which expresses that for every state with the
same past as s, there is better state which still has the same past at the next
step. This condition ensures that some of the current ideal worlds are still ideal
at the next step.

Given a temporal deontic model ((S, <¢, <4),V) and a state s € S,

IdealSameProp(s) “ovses it SamePast(s,s’) then

ds” € S such that SamePast(s,s”) and V(s) =V(s") and & <458”

Remark 2. If (W, Zprey) is a well-quasi-order, then I'dealSameProp(s) is defined
in a more simple way:
f

IdealSameProp(s) © 35 e BestSamePast(s) such that V(s) =V(s')
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Property 6. Given a temporal deontic model ((S, <¢, <4),V) and a state s € S,
the condition Ideal SameProp(s) holds iff there is no violation of a propositional
formula in s, that is, iff for any propositional formula ¢, s = =(O(p) A ).

Proof. We first prove that if IdealSameProp(s) does not hold, then there is
some propositional formula ¢ such that s = O(p) A ~p. We then prove the
other direction.

<" : Suppose that IdealSameProp(s) does not hold, i.e.,

ds’ € S such that SamePast(s,s’) and
Vs" =48 if SamePast(s,s”) then V(s)# V(s")

Then, we consider such a state s’ and define the set VAL(s") of all the valu-
ations of the states which are at least as good as s’ and share the same past.

VAL(S) & {(V(s?) / s <48 and SamePast(s’,s”)}

VAL(s') is finite since it is included in the set 22" Let us consider the proposi-
tional formula ¢ defined as follows:

o=\ (A~ A»
)

veEVAL(s") peEwv pEv

Since every such state s” has a valuation which is distinct from the valuation of
s, then s = —p. Besides, from the definition of obligation we have that s = O(y).
Thus, s = O(p) A —p.

'=7: Let us suppose now that there exists some propositional formula ¢ such
that s = O(p) A —p. Then,

ds’ € S such that SamePast(s,s’) and
Vs >2q s if SamePast(s,s”) then s FE¢

Every such s” has a valuation which differs from the valuation of s, i.e., V(s”) #
V(s),since s = —¢ and s” |= . Therefore, Ideal SameProp(s) does not hold. O

In a state s that satisfies IdealSameProp(s), the deontic realm that will be
considered next is a subset of the current deontic realm. So we still have,
as in section Bl that no obligations are forgotten, but some may appear. If
IdealSameProp(s), then s = O(X¢) = X O(p), but XO(p) = O(X¢) does
not hold necessarily.

Property 7 (Propagation). A state which does not satisfy any violation of a
propositional formula satisfies the propagation property.
If IdealSameProp(s) then
sEO@VXY)AN-0pA-p = X0y

for ¢ propositional formula, and ¢ any formula.
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Proof. The proof is similar to the proof of property [l in section B, except that
we have not the case where every formula is obligatory in the temporal successor
of s. O

We still have, as in section Bl property 2l a more precise characterization.

Property 8 (Characterization of new obligations). For any formula v, if in a state
s, which satisfies IdealSameProp(s), both the formulas X O(¢) and -0 (X))
hold, then there exists a propositional formula ¢ such that

st OV XP)A=0(p) Ay

When an obligation appears, it is necessary due to the propagation of some more
general obligation in the previous state. So the propagation property completely
characterizes the new obligations that appear.

Proof. The proof follows the same idea as the proof of property 2l in section
B1 0

As said in the introduction of section [, as a consequence of the general prop-
agation property, if a state s satisfies IdealSameProp(s), then it satisfies the
following property of propagation for an obligation with deadline, since F¢jp <
oV XF¢r_19, for k> 0:

s = O(Fkp) N=0(@0) A=y = XO(Fepp)

for any deadline & > 0, and ¢ propositional formula. This property expresses
that if it is obligatory to satisfy ¢ before a deadline & (and it is not obligatory
to satisfy it now) then, if ¢ is not true now, the obligation is propagated.

In a state which does not satisfy IdealSameProp, that is, a state which vio-
lates an obligation of some propositional formula, the deontic realm of the next
state switches to a lower level. We consider that when a state violates the present
rules, then they become obsolete. In such a state, O(X¢) = X O(y) is not guar-
anteed, and neither is any link between what is satisfied in the current state,
and what is obligatory next.

4 Branching Time Structures

Many proposals to combine temporal and deontic concepts use a branching time
structure, where the ideal alternatives are subsets of the possible future worlds
[I321T/9]. This has several advantages. In particular, the principle “must implies
can” is guaranteed. And our “identical past” criterion is automatically satisfied
by branching time structures. However, some of the intuitive properties we have
discussed in this paper do not necessarily hold in a branching time setting, and
may be hard to implement. For instance, we consider that an atomic proposition
p can be both true in the current state and false in some ideal state. In pure
branching time approaches [I2] this is usually not possible. Branching time
approaches thus have problems modelling immediate obligations. For example,
O(p) A —p is not satisfiable in such logics.
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An exception has to be made for deontic STIT formalisms [I3], where mo-
ments are partitioned into choices, and where a proposition can be obligatory
but not true at the same moment. However, it is quite unclear how to imple-
ment a principle of propagation in the conceptually rich setting of STIT models.
Actually, we can represent our model in a tree like view as in STIT theory by
putting together the histories sharing the same past. In a STIT framework, the
moment /history pairs (m,h) would naturally correspond to our states (i, w),
and the histories h to our deontic worlds w. To have a branching time view, the
states (i,w) that share the same past would be represented by a unique mo-
ment m. So two deontic worlds w and w’ that share the same past until ¢ would
naturally be represented by histories that go through the moment m, where m
represents both states (i,w) and (i,w’). But in the STIT framework, there is a
valuation of atomic propositions for every moment /history pair. So two histories
that go trough the same moment m, also go trough the same moments w’ for
every w' < w, while the valuation they have may differ. Our model can thus
be easily translated to a STIT setting under the restriction that two histories
sharing the same past moments also share the same valuation on these moments.
More formally, for a moment m, and two histories hy and hs,

(m € hy and m € hy) if and only if (Ym' <mVp € P m/,hy Ep iff m', ha = p)

The strict operator < allows us to have different valuations for the same moment
m depending on the history we consider, if the histories split after this moment.
Our framework is close to a STIT framework with this restriction. To charac-
terize a state (called moment in a STIT model) that satisfies IdealSameProp
corresponds in such a STIT model to a moment/history pair (m,h) which has
the same valuation as some pair (m,h’), where h’ is ideal. Such pairs, which
would need a formal characterization, would satisfy the propagation properties
we have studied.

5 Conclusion

In this paper, we have studied properties concerning the propagation of oblig-
ations for the future that have not been fulfilled yet. Because we do not want
to consider explicit updates of the deontic realm, we started with a product
of temporal and deontic logics, and concluded that to account for propagation
properties we had to drop the property of ‘no learning’. Going through some
“hybrid” semantics, we settled on a semantics with levels of ideality exposing
interesting similarities with branching time STIT settings. We characterized the
states where obligations are propagated: these are the states in which no imme-
diate obligations are violated. In such states, obligations are not forgotten, and
the new obligations are due to the propagation of some past obligations which
are not fulfilled yet. On the other hand, in the states which violate immediate
obligations, the ideal states switch to a lower level of ideality, and the obligations
of the next state do not depend on what is true now.
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The propagation of obligations has been studied in the restricted case of ded-
icated operators for obligations with a deadline, for instance in [B6I7/9]. But,
to our knowledge, the more general propagation property we have focused on is
new.

We only considered a linear time setting with one agent. We cannot express
“must implies can”, nor “it is obligatory to make something possible”, nor “it is
obligatory for an agent to do something”. Therefore it would be interesting to
further develop the link with STIT models mentioned in section @l We plan to
formalize it and thus study the propagation of obligations in a framework which
allows branching time and multi-agents reasoning.

Another issue is the decidability of our logic. A clue is that the genuine product
LTL x SDL is decidable (see [I0] for the decidability of LTL x K), but the
decision problem is non elementary.
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Abstract. The proof theory of multi-agent epistemic logic extended
with operators for distributed knowledge is studied. A proposition A
is distributed knowledge within a group G if A follows from the totality
of what the individual members of G know. There are known axioma-
tizations for epistemic logics with the distributed knowledge operator,
but apparently no cut-free proof system for such logics has yet been
presented. A Gentzen-style contraction-free sequent calculus system for
propositional epistemic logic with operators for distributed knowledge is
given, and a cut-elimination theorem for the system is proved. Examples
of reasoning about distributed knowledge that use the calculus are given.

1 Introduction

Distributed knowledge is usually characterized by saying that A is distributed
knowledge within a group G if A follows from the totality of what the individ-
ual members of G know. For instance, A is distributed knowledge in group G
(denoted D A) consisting of three agents of which the first one knows B, the
second one knows B D C, and the third one knows B & C O A. Reasoning about
the combined information possessed by different agents is an important task in
multi-agent systems in which all information is not available in one central source
but distributed among several agents.

In such situations, epistemic logic [I] is typically used for representing and
reasoning about knowledge. In the literature concerning multi-agent epistemic
logics, e.g. [23], operators for distributed knowledge are often included. However,
these treatments usually concentrate on the model theory of the logics, whereas
the proof-theoretical part is limited to providing Hilbert-style axiomatizations.
Since theorem-proving is difficult in Hilbert-style systems, we shall here study
Gentzen-style sequent calculi as a step towards mechanization of proof search.

One proof-theoretical approach to reasoning about distributed knowledge is
given in [4], but the approach is different because of the use of natural deduction
instead of sequent calculus and context-based logic instead of epistemic logic.
The development of a proof system for logic of distributed knowledge has been
recently posed by S. Artemov as an open problem for the system of evidence-
based knowledge (see [5]). This paper presents a solution for ordinary multi-agent
epistemic logic by the methods developed in [6/7].

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 100 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Formal systems for drawing inferences in distributed knowledge may be useful
in several application areas that attempt to combine knowledge of agents, such
as cooperative problem solving, knowledge base merging, and judgement aggre-
gation. In cooperative problem solving it is usually assumed that the agents are
willing to provide any information they have and that all information is certain.
In such situations, it is possible to combine the separate knowledge bases into
one and then derive theorems from the large knowledge base. However, typically
in knowledge base merging the data can contain errors, and is thus not strictly
speaking knowledge. The combination of information from multiple sources may
then lead to an inconsistent knowledge base, and special methods have to be
used for dealing with contradictory information (see, e.g. [SI9UT0]). These meth-
ods often involve discarding some information in order to maintain the integrity
of the database.

In cases with heterogeneous information sources, the knowledge modalities
should not be understood as knowledge proper but rather as beliefs. In open
information systems, and in situations involving strategic considerations, such
as in judgement aggregation or voting, agents can even provide false information
on purpose, so it is not possible to infer their real beliefs from what they report,
but the information they provide must be treated as claims, acceptances or just
as messages with propositional content.

The introduction of the knowledge modalities and the modality for distributed
knowledge into the logical language can be beneficial, because the management
of the meta-information concerning the sources of knowledge and their various
combinations becomes easier. When the source of information is stored in addi-
tion to the content, also contradictory information can be dealt with: If agent 1
claims that A is the case and agent 2 claims that not-A is the case, the receiv-
ing agent should decide which piece of information to accept and which one to
reject. However, when such a situation arises there may not be enough informa-
tion available for resolving the conflict. If our language is rich enough to allow
also knowledge propositions and the agents are able to reason about distributed
knowledge, incoming information need not be discarded nor is it necessary to
immediately judge some agents unreliable. Instead, we can store the knowledge
claims without violating the integrity constraints, and we can use the stored
information to find out which agents we can trust, possibly later when we have
gathered more information.

Thus, the addition of the knowledge operators to the language makes it pos-
sible for the agents to perform reasoning about the distributed information
possessed by various agents and groups of agents and to detect inconsisten-
cies between claims made by agents. Also, the possibility to iterate knowledge
operators allows for more complex reasoning tasks than reasoning from an inte-
grated knowledge base without iterated modalities. Reasoning of this type may
be used in cooperative information systems to find out which agents have useful
information with respect to the task at hand.

In Section 2, we introduce the logical system and show that it can be used to
derive the axioms given in complete axiomatizations for the logic of distributed
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knowledge. In Section 3, we show that the system has the required structural
properties such as admissibility of the structural rules, and discuss the relevance
of these results for proof search. In Section 4, we present examples of derivations
in our calculus and discuss possible application areas of our methods. In par-
ticular, we show in a concrete case that if a formula is in the deductive closure
of the totality of what the agents individually know, then it is derivable as dis-
tributed knowledge in our system; we present the same-birthday example from
[11] within our formalism; we show how proof search can be used for discarding
unreliable information sources and for performing co-operative problem solving.
Finally, after summarizing our results, we discuss in Section 5 the possibility of
extending our system with the principle of full communication mentioned in [12].

2 Logic of Distributed Knowledge

Our starting point is the modal sequent calculus system G3K [7]. (For a general
introduction to Gentzen-style sequent calculus, see [6].) We replace the modal
operator [J with the knowledge operators K, for individual agents a € G. We
extend the logic with the operator Dg with the intended meaning for Dg A that A
is distributed knowledge within the group G (sometimes, for ease of readability,
the subscript G will be omitted when clear from the context).

In [7] the rules for O are determined by the forcing relation of Kripke semantics

z IFOA iff Vy(zRy — y IF A)

where x, y range in the set of possible worlds and R is the accessibility relation.
In multi-agent epistemic logic there is an accessibility relation R, for each agent
a, and validity of K A is defined by

2 Ik K At Vy(zRoy — y IF A).

The right to left direction of the equivalence gives the right rule of K., the
opposite, the left rule. We shall use colon ‘:’ to stand for the forcing relation (so
x : A can be read as saying that A holds at world x). In general, sequents of the
form I' = A can be understood as saying that the disjunction of the formulas in
the multiset A can be derived from the conjunction of formulas in the multiset
I representing the open assumptions. The rules are
xRay,F:>A,y:AR)C y:A,x:ICaA,xRay,FéALK
I'=A2:K,A “ 2 KoA, 2Rey, I' = A ‘
Rule R/C, has the variable condition that y must not appear in the conclusion.
In possible world semantics, distributed knowledge of A in G is (usually but
not always, see [I2I13]) taken to hold if and only if A holds in every world that
every agent in GG considers possible. Thus, distributed knowledge is defined as
follows (see e.g. [2]) w.r.t. a Kripke structure M and a world s

(M, s) = DgA iff (M,t) |= A for all t such that (s,t) € ) Ra.
aceG
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The rules for distributed knowledge are found accordingly

{zRey}acc, ' = Ay : A . y: Az : DeA, {xRoy}taca, I = A o
I'= Az:DgA ¢ 2 : DA, {zRoytace, I = A ¢

Similarly to rule RIC,, also rule RD¢ has the restriction that y must not appear
in the conclusion. The intended meaning of the notation {xR,y}.cq is that what
is inside the curly brackets should be repeated for each agent a € G} for instance,
with a group of two agents 1 and 2, the right rule becomes

xRy, xRoy, ' = Ay : A

RD
I'= A,(E : D{LQ}A e

The rules for the calculus are given in Table [l Observe that initial sequents
are restricted to atomic formulas P. This feature, common to all G3 systems of
sequent calculus, is needed in order to ensure invertibility of the rules and other
structural properties. Note also that no rules for negation nor equivalence are
needed because we take ~A to be a shorthand for A D 1 and A DC B as a
shorthand for (A D B) & (B D A).

In addition to these rules, the properties of the agents’ accessibility relations
can be chosen by adding to the system suitable rules corresponding to desired
properties, as explained in [7]. The common choices in the case of epistemic
logic are reflexivity (which guarantees that the actual world is always taken to
be epistemically possible so that nothing false can be known) and transitivity

Table 1. System G3KEp

Initial sequents:

z:PI'=Az:P

Propositional rules:

z:Ax:B,I['= A I'=sAz:A I'=s>Az:B
2 A&BT=A I'=>Az:A&B e
z: AAl'=>A z:BI'=A I'=sAz:Azx:B
t:AVB, I = A e I'=Az:AvB
I'=sAzxz: A :E:B,FéAL x:A,FéA,:E:BR
©:ADB, = A . I'=Az:A>B '~

z: 1L, = A -

Modal rules:

y: Az KeA,xRoy, I’ = A . cR.y, ' = Ajy: A .
z: KoA, xRy, ' = A “ I'= Azxz: KA “
y:Ax:DgA {xRay}acc, = A {zRay}acc, I = A,y : A
LDg RDg

z:DgA,{xRay}aca, I = A I'= Ajx:DgA
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(which gives the property of positive introspection: if an agent knows something
then she knows that she knows). These together yield an S4-based epistemic
system. In the case of doxastic logic, that is, the logic of belief, reflexivity is
abandoned to allow the possibility of false beliefs. Sometimes also symmetry
(which together with transitivity gives negative introspection: If an agent does
not know something, she knows that she does not know it) is added, in which
case the accessibility relations are equivalence relations and the resulting system
is then based on what is known as S5. The rules corresponding to reflexivity,
transitivity and symmetry for agent a are, respectively

rR.x, I’ = A TRuz, xRy, yRoz, I’ = A yRox, xRy, I = A

I'= A o xRy, yRaz, I’ = A franse xRy, ' = A

Yma

Observe that the rules have active and principal formulas in the antecedents of
sequents, so they correspond to implication from the atoms in the conclusion to
those in premisses.

Our system is modular in the sense that one need not be committed to a par-
ticular set of properties for the accessibility relations but the results given in this
paper hold for accessibility relations with any combinations of these properties.
Also other properties can be used as explained in [7]. It is also possible to have
several modalities in one system without losing the good structural properties
of the system. For example, knowledge and belief can be treated simultaneously
by adding suitable rules for the belief operators and the doxastic accessibility
relation for each agent. The relationship between modalities may require new
rules, like in this case a rule for ensuring that the doxastic accessibility relation
is included in the epistemic accessibility relation corresponding to the idea that
knowledge entails belief. Temporal modalities can be added in a similar fashion.
In the examples presented in this paper, we shall not combine different informa-
tion attitudes so we can just use one type of modal operator K, (specific to each
agent a) to stand for whichever modality is appropriate in the situation. Simi-
larly, the operator D¢ is taken to mean a distributed version of the KC-modality,
be it knowledge, belief, or something else.

According to [I2], the intuitive characterization of distributed knowledge as
everything that follows from the combined knowledge of the individual agents
does not always coincide with the semantic characterization based on the in-
tersection of the agents’ accessibility relations. In particular, if the number of
possible worlds is infinite or if there are worlds that cannot be distinguished
from each other using the logical language, what they call the principle of full
communication may fail. This means that the agents are not able to express
their full epistemic state to the other agents and thus the combination of the
sentences they know may not convey all the information that would result from
taking the intersection of the agents’ accessibility relations (see [12], [13]). As
explained in Section 5, our system can be extended so as to include the principle
of full communication.

As shown in [7], the standard axiomatic sequents z : A, I" = A,z : A, for
arbitrary, not just atomic, A, and the characteristic axioms of the standard
modal logics are derivable in the respective sequent calculus systems, and the
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necessitation rule is admissible. These results extend to multi-agent epistemic
logic with knowledge generalization rules for each agent a € G

=z:A
=z: KA
The addition of distributed knowledge operator requires new axioms. A sound
and complete axiomatization for the epistemic logic based on S5 with distributed

knowledge is provided in [I4], [I5], and in [3]. The axioms to be added to standard
axiomatizations of epistemic logics would be the following:

KaA D DgA, for each agent a € G (1)

and

(D(;A &Dg(A D B)) D DgB. (2)
In order to demonstrate the completeness of our calculus, we first show that
these axioms are derivable.

Proposition 1. K, A D DgA is derivable for each agent a € G in GE8KEp.

Proof. For each agent a € G, the derivation goes as follows:

y: A {rRey}tacg, v KbA=y: A
{xReY}acc, v : KgA=y: A
z: KeA= x:DgA
= 1:K,ADDgA

RDg
RD

where the uppermost sequent is derivable.
Proposition 2. (DgA & Da(A D B)) D DB is derivable in G3KEp.
Proof. The derivation is:

y:A...=y:By:A y:B,...=>y:B ;
y: ADB,y: A {xRyytacc,z : DgA,x : Deg(ADB)=vy:B o
y: A {zRoy}acc, v : DeA,x: Dg(AD B)=y: B o “
{zRoy}acc,®: DgA,x: Dg(AD B)=y: B o ¢
2:DcA,x : Dg(ADB)=z:DgB ¢
L&
thpgA&'D(;(ADB)ix:'D(;B "
=T ('DgA &Dg(A D) B)) D DgB

)

)

where the uppermost sequents are derivable.

Completeness with respect to the mentioned Hilbert-style system further requires
closure under modus ponens and under the necessitation rules for epistemic
operators. These properties are shown in the following section.

In some applications it is useful to be able to reason about shared knowledge,
that is, something that all the agents know. It is straightforward to add to the
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calculus an operator £ for shared knowledge: Since £ A means that everyone
in group G knows that A, it can be used as a short-hand expression for the
conjunction K4 A & ... &K,, A where G = {a1,...,a,}. The right and left
rules for shared knowledge are thus not required for the calculus but can be
derived from the K; rules. These are as follows

{xRﬂthF = Avya : A}ELGG ya : A7$ : 5G”lexl%ﬂytul—’ = A
F - A’x : 5GA REG LEq (aEG)

x:EqA, xRy, ' = A
with the variable condition in RE¢ that no variable y, appears in the conclusion.

3 Structural Properties

We shall now proceed with the structural properties of our system. The use of
variables referring to possible worlds requires that we define substitution and
prove a substitution lemma as in [7]. Substitution is defined as follows:

zRyy(z/w) = xR,y if w # x and w # y,
xRuy(z/x) = 2Ray if x # vy,

xR.y(z/y) = xRez if x # vy,

TRz (z/x) = 2R 2,
x:Alz/y)=x: Aifx # vy,
x:Alz/x)=2: A

for all @ € GG. Substitution in multisets is defined componentwise.

Lemma 1 (Substitution lemma). If I' = A is derivable in GSKEp, then
also I'(y/x) = A(y/x) is derivable, with the same derivation height.

Proof. The proof is by induction on the height n of the derivation of I" = A as
in [7]. If n = 0 and the substitution y/x is not vacuous, the sequent I" = A is
either an initial sequent or conclusion of LL. In either case I'(y/z) = A(y/z)
is also an initial sequent of the same form or conclusion of L1. Suppose then
that the claim holds for derivations of height n and consider the last rule applied
in the derivation. If the last rule is a propositional rule or a modal rule without
variable conditions, apply the inductive hypothesis to the premisses and then
apply the rule. If the last rule is a rule with a variable condition (R, or RD¢),
we must be careful with the the cases in which either z or y is the eigenvariable
of the rule, because a straightforward substitution may result in a violation of
the restriction. In those cases we must apply the inductive hypothesis to the
premiss and replace the eigenvariable with a fresh variable that does not appear
in the derivation. The details are omitted here but similar cases are considered
in [7, Lemma 4.3].

Theorem 1 (Height-preserving weakening). The rules of weakening

I'= A I'= A I'= A
x: A=A rw 2Ry, I = A W o

I'=sAx: A
are height-preserving admissible in G3KEp.
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Proof. The proof is by induction on the height of the derivation of the premiss.
The cases with propositional rules and the modal and nonlogical rules without
variable conditions are straightforward. As in [7], if the last step is a rule with
a variable condition (RK, or RD), we need to apply the substitution lemma to
the premisses of the rule in order to avoid a clash with the variables in = : A
or xR,y. The conclusion is then obtained by applying the inductive hypothesis
and the rule in question.

Theorem 2. The necessitation rules

=z:A =z:A
=z: KA = 2:DgA

are admissible in GESKEp.

Proof. Suppose we have a derivation of = = : A. By the substitution lemma
we obtain a derivation of = y : A and, by admissibility of weakening, of
xRy = y: A, and {zR.y}aec = v : A. By RK, and RD, respectively, we have
= x:K,A and = x: DgA.

Theorem 3. The rules of G3BKEp are height-preserving invertible.

Proof. For the propositional rules, the proof is exactly as the proof of height-
preserving invertibility of the rules of G3c in [6] Theorem 3.1.1]. For the K-rules
and rules for the accessibility relations, the proof is similar to [7, Proposition
4.11]. Invertibility of LD¢ is immediate because the premiss can be obtained
from the conclusion by (height-preserving) weakening.

Invertibility of RD¢ is proved by induction on the height n of the derivation
of the conclusion I' = A,z : DgA. If n = 0, it is an axiom or conclusion of L1
and so is the premiss {zRoy}acc, ' = A,y: A. Ifn>0and I' = Az : DgA is
concluded by a rule other than RIC, or RD¢ (which have a variable condition),
we apply the inductive hypothesis to the premiss(es) and the rule. If the rule is
RK,, we have a derivation ending with

cR,w, ' = A,z : DgA,w: A .
I'= Az :DgA,z: KA ‘

We can assume that the eigenvariable w is different from y, otherwise we can ap-
ply the substitution lemma. Now the inductive hypothesis applied to the premiss
gives a derivation of the same height ending with

{zReY}acc, tRow, I = Ajw: Ajy: A

RK,
{zRoY}aca, I = Az : KAy A

The case in which the conclusion was derived using RD¢g and the principal
formula is in A is similar. In case the principal formula was z : DgA itself,
the premiss is already the sequent we wanted to prove derivable, except for
the possibly different eigenvariable, which can be changed by height-preserving
substitution.
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Invertibility of the rules is useful for theoretical purposes because it simplifies
some other proofs but it is crucial for the practical reason that root-first proof
search requires no backtracking mechanism if all the rules are invertible: If we
find out in our current branch of a proof tree that a sequent is not derivable we
can immediately infer that the proof search has failed and can be terminated
because, by invertibility, the conclusion cannot be derivable either.

Theorem 4. The rules of contraction

x: Az A= A 2Ry, xRy, I = A . I'=sAzxz:Az: A
x: A= A " xRy, ' = A I'=s> Ax: A

are height-preserving admissible in G3KEp.

Proof. By simultaneous induction on the height of derivation for left and right
contractions. In the base case, observe that an initial sequent stays initial if two
occurrences of a formula are contracted into one. For the inductive step, three
cases are distinguished: The case with none of the contraction formulas principal
in the last rule, the case with one principal, and (only for RC'trg,) the case with
both principal. In the former, apply inductive hypothesis to the premiss of the
rule, then the rule. In the latter, apply the matching height-preserving inversion
to the premiss(es) of the rule, the inductive hypothesis, and the rule. In the
third, the closure condition, as explained in detail in [7].

Also admissibility of contraction is useful for the practical reason that it guar-
antees that we need not multiply formulas in sequents during the proof search.
If a sequent can be derived using contraction, it can be derived without using it.
In addition, height-preserving admissibility of contraction permits the restric-
tion of the search space also with respect to other rules: Whenever application
of a rule, root-first, produces a duplication, by height-preserving admissibility
of contraction the conclusion of the rule can be obtained in one step less. The
possible applicable rule can thus be discarded if we reasonably assume that the
derivation we are looking for is a minimal one, i.e. one that does not admit any
local shortening through the elimination of contraction steps.

Theorem 5. The cut rule
I'=AC CI'=A4
Ir'= A A

Cut

1s admissible in GSKEp.

Proof. The proof proceeds by induction on the structure of the cut formula
C with subinduction on the cut-height, that is, the sum of the heights of the
derivations of the premisses. The proof is to a large extent similar to the cut-
elimination proofs in [6] (e.g. Theorem 3.2.3) so we shall consider in detail only
the case in which the cut formula is DA and is principal in both premisses:
{xRuY}acc, = Ajy: A z:Ayx: DA {xRoz}ace, [ = A
= Az:DeA P DA (2Rez ece, ' = A T

[ {2Rez}acc, I = A, A! ct
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Let n be the height of the derivation of the left premiss and m the height of the
second. Then the cut-height is n+ 14 m+ 1. This derivation can be transformed
into the following:

{zRoy}tacc, I = A,y: A .
{zRoy}tacc, I = A,y: A I' = A z:DgA z2: A,z DoA, {zRuz2}aca, " = A’
Subst Cut
{zRoz}aca, I = A, z: A e z: A, [N {zRyz}aca, ' = A, A’
Cut
{zRoz}aca, Iy T {zRoz}aca, ' = A, A, A “

, , Ctr*
I''{zRoz}aca, I’ = A A

Note that the height-preserving substitution in the derivation of the left premiss
of the second cut has no effect on I" or A because, by the variable restriction
of rule RD used in the original derivation, y does not appear free in I" or A.
The derivation has two cuts, the first of which has lower height and the second
smaller size of the cut formula.

As a consequence of admissibility of cut, it follows that our system is closed
under modus ponens, and therefore it is complete with respect to the known
Hilbert-type systems for the logic of distributed knowledge.

In [3], an alternative Hilbert-type system is presented; the system is obtained
by adding to the standard axiomatizations of T, S4, or S5, the rule

A&.. . &An O B )
Koy A& ... &Kq, Am D DeB

where ay,...,a,, are the agents in GG. The labelled version of the rule is shown
admissible in our system as follows:

=ux:A1&...&A,, OB [
x: Ay, .., x:Ap=x:B ’
y:A,...,y:Apn=>9y:B Subst
{zRa,y} aicc,y: AL,y A i Koy Av, ooyt Ky Ay =y B i:;v LK
{2Ra,Y}aecr® : Koy A,y oo yx: Koy, A =y B o
21 Ko AL,z Ka, P
z: Koy A& .. &Ky, Amy = ©: DeB

21 Ko, Arke .. &Ka, Ap D DB

*

am

Am

Am =z :DgB
L&*

RD

Am

where L&-Inv, RD-Inv denote the (admissible) invertibilities of L& and R D,
respectively, Subst the admissible rule of substitution, and the asterisk indicates
possibly repeated applications of a rule.

Admissibility of cut is crucial for delimiting the space of proof search, because
it guarantees that no arbitrary new formulas need to be constructed during the
search. However, our system does not enjoy a full subformula property because
some rules remove atoms, but a weak form of subformula property, that is, all
formulas in a derivation are either subformulas of (formulas in) the endsequent
or atomic formulas of the form xRy. By considering minimal derivations, that is,
derivations in which shortenings are not possible, the weak subformula property
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can be strengthened by restricting the labels that can appear in the relational
atoms to those in the conclusion or to eigenvariables (subterm property). This
property, together with height-preserving admissibility of contraction, ensures
the consequences of the full subformula property and has been used for estab-
lishing decidability through terminating proof search for the system G3K and
several extensions in [7]. The proofs are involved so we shall not consider the
issue for G3KEp here but leave it to future work. However, we do not expect
problems from the addition of the rules for distributed knowledge.

4 Examples

As a simple example of reasoning about distributed knowledge, consider the
case of three agents mentioned in the beginning of the article. Suppose we have
encoded the initial situation to a knowledge base KB so that it consists of the
formulas z : 1B,z : Ko(B D C),x : K3(B & C D A). We can now ask whether
x : Dyy,2,33A can be derived from the knowledge base. (We shall use for clarity
D instead of Dyy5.3)). Proceeding in a root-first fashion we get the following
derivation in which the uppermost sequents have the same formula on both sides
of the sequent arrow and are thus derivable:

y:C,y:B...=...,y:B y:C...=...,y:C

y:C,by:B...=>y:Ay: B&C R&y:A,y:C,..‘éy:A
..,y:B,...=>y:Ay: B y:C,y: B&C DA, y:B,...=>y: A 2
y:B&C DA,y:BDC,y:B,...=>y: A 2 .
y:BDC,y: B,axRiy, xRy, 2Ry, : K1B,x: K2(BD O),z: Ks(B&C D A) = y: A LKZ

y: B, zRi1y,zRoy,zR3y, 2z : KiB,z: K2(BD C),2 : K3(B&C D A)=y: A .
zR1y,zR2y,xR3y, v : K1B,z : K2o(BD C),z : K3(B&C D A)=y: A !
RD
z:Ki1B,z:Ko(BDC),z:K3(B&C D A)=x:DA

Next we shall consider the derivation of the birthday case mentioned e.g. in
[11]: In any group it is distributed knowledge whether two agents have the same
birthday. The assumption is, of course, that everyone knows one’s own birthday.
If these pieces of individual knowledge were combined, it would be easy to verify
whether the birthdays of any two agents are identical. We shall here consider
only a group of two people but the extension would be straightforward.

Take P(i,t) to be the proposition that agent i’s birthday is ¢ and consider the
proposition that it is distributed knowledge in group G whether two agents in
G have the same birthday. This could be expressed as follows:

Note that although we have been concerned with propositional epistemic logic,
we shall here use first-order notation for ease of exposition. The example can be
cast in propositional logic as well, for example, by using standard proposition-
alization techniques, see e.g. [I6] pages 274-275]. To avoid having to use a large
number of propositional symbols, we shall use a notation that looks like first-
order notation, but we shall assume that everything is encoded in propositional
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logic. We can thus suppose that our knowledge base KB consists of sentences
such as the following: = : P(i,t) D K;P(i,t) for all agents i and all dates ¢. In
propositional logic, this would look something like:

Birthday Agent1 January01 D Ky (Birthday Agentl January01) etc.

KB now encodes the assumptions that each agent, here 1 and 2, knows one’s
own birthday.

Instead of putting the assumptions in KB to the left-hand side of the sequent
arrow as in the previous example, we shall here employ the method of converting
axioms to rules as in [I706]. Thus, each axiom in KB will be replaced by a
corresponding rule of the form:

x: KiP(i,t),x: P(i,t), [ = A .
z:P(i,t),[ = A o

Observe that the addition of a rule of this form maintains all the structural
properties of the system: Admissibility of contraction is guaranteed by the rep-
etition of the principal formula x : P(i,t) in the premiss. Further, there is no
interference with the process of cut elimination because the principal formula
x : P(i,t) is atomic. Also invertibility of all the rules is for the same reason
unaffected by the addition.

To make the example manageable, we shall prove only the part saying that
if two agents have the same birthday, it will be distributed knowledge that they
have the same birthday. (Proving the other part saying that if their birthdays
differ, they will know that they differ, would require stating in addition that
each agent can have only one birthday.) By making a further simplification and
treating ¢t as a constant here, we can express the claim as follows:

P(1,4) & P(2,t) D Dy1.0y(P(1,) & P(2,1)).

Without this simplification we would have to use the more complete expression,
that is, a conjunction of all implications of the above kind for all possible values
of t.

We get root-first the following derivation:

Ax

y:P(1,t),x: KiP(1,t),zR1y,xRay,x : P(1,t),z: P(2,t) = y: P(1,t) e
z: K1P(1,t),zR1y, xRoy,x : P(1,t),z : P(2,t) = y: P(1,t) .
zR1y,zRay,z : P(1,t),z: P(2,t) = y: P(1,t)
TcR1y,zRay,x : P(1,t) & P(2,t) = y : P(1,1) b (similarly)
Ry, zRay,x : P(1,t) & P(2,t) = y: P(1,t) & P(2,t)
x: P(1,t) & P(2,t) = = : Dg1 23 (P(1,t) & P(2,1))
= z:P(1,t) & P(2,t) D Doy (P(L1) & P(2,1)

B

R&

Thus, it is proved that if two agents have the same birthday, this fact is distrib-
uted knowledge.

Consider next an example in which agents possess information that put to-
gether leads to a contradiction. Suppose that agent 1 knows that A D B and
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B D C. She then receives a message from agent 2 claiming that A and a mes-
sage from agent 3 claiming that ~B & (A V C). Agent 1 stores the information
so her knowledge base KB contains the following formulas: z : 1(4 D B),
z:Ki(BDCO), x: KA,z : Kg(~B &(AV C)). To find out whether all incom-
ing information can be safely believed, agent 1 should check that the claimed
contents do not lead to a contradiction as happens here:

y:B,...=>y:1Ly:B y:J_,...:>y:J_LL

y:BD1lL,y:AvC,y:B,y: A,xR1y,zRoy,zR3y, KB =y : L

y:(BDL)&(AVCO),y:B,y: A,zR1y,zRoy,zR3y, KB = y : L ii
y:A,...=>y: Ly A y:B,y: A,zR1y,zRoy,xR3y, KB = y: L 3

y: ADB,y: A,zR1y, xRy, 2R3y, KB =y : L iy
y: A, xRy, zR2y,zR3y, KB =y : L
zR1y,zRoy, cR3y, KB = y : L
KB =z :Df1,23;-L

LD

LD

LKg

RD{1,2,3}

Since combining all the information leads to a contradiction, agent 1 must find
a subset of agents such that contradiction cannot be inferred. In this particular
case she may decide that either 2 or 3 is less reliable than the others, or she
may even decide that her own previous beliefs should be revised in light of
the new information provided by 2 and 3. Supposing that she decides to drop
the information provided by agent 3, she should then check that contradiction
cannot be derived from the combined knowledge of 1 and 2 as follows:
y:B,...=y:1L,y:B y:C,y:B,y: A,zR1y,zR2y, KB=1y: 1 -
y:BDC,y:B,y: A,xR1y, xRy, KB=y: L
y: A ...=>y: Ly A y:B,y: AjzR1y,zR2y, KB = y: L
y:ADB,y: A,zR1y, xRy, KB = y: L
y:AxRiy,xRey, KB =y : L s
zR1y, xRy, KB = y: L
KB=z:Dugl 0%

LK1
L>
LK

The uppermost premiss on the right hand side is not derivable: It is possible
to continue the derivation by re-applying the left knowledge rules applied to
formulas in KB or using the reflexivity and symmetry (and later transitivity)
rules for the accessibility relation. After that left knowledge rules can also be
applied with the expression xRyx (or xRex) to yield x : A, x : B and z : C
on the left hand side. Eventually only duplicates of existing formulas will be
produced and the search can be terminated.

Agent 1 can now conclude that it is safe to reason about distributed knowledge
among herself and agent 2 (because not everything can be inferred). Then she
can find out, for instance, that together they can conclude that C holds:

y:B,...=y:C,y:B y:C,y:B,y: A,zR1y,zRy, KB =y :C -
y:BDC,y:B,y: A,xR1y, xRy, KB=y:C
y:A,...=>y:Cy: A y:B,y: A,xR1y, xRy, KB =y : C
y:ADB,y: A,zR1y, 2Ry, KB=y: C s
y:A xRy, zR2y, KB =y :C Ly
cR1y,zR2y, KB =y : C
KB = 2:D(2C P2y

LK

LD
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This is actually the same derivation as the previous one just with L replaced by
C, but now all the premisses are derivable.

Instead of having decided to trust agent 2, agent 1 could have decided that
agent 3 is more reliable. Then she would have had to check that Dy 3y L cannot
be derived and then to use the distributed knowledge between 1 and 3 as the
basis of her reasoning. In general, reasoning and decision-making of an agent a
can be based on the distributed knowledge D, where T, C G is the set of agents
currently held reliable by agent a. The choice of which agents to trust can later
be retracted: If it turns out that some of the agents provide information that is
clearly false, these agents can then be dropped from the subset T,. The main
point is that storing the source of information as well as the information content
in the databases combined with the use of proof methods for reasoning about
distributed knowledge provides a flexible way to deal with possibly erroneous
multi-source information in a controlled fashion.

Note, however, that reasoning about distributed knowledge should not be seen
as an alternative to existing information merging methods but rather as a tool
for recognizing inconsistencies and making inferences from combined knowledge
bases. This is because distributed knowledge is defined as whatever follows from
the totality of what a collection of agents know. Thus, the approach does not di-
rectly support taking just one part of an agent’s knowledge and rejecting another
part that causes contradictions, as is often done in belief base merging. Reasoning
about distributed knowledge requires either including everything an agent knows
or excluding the agent altogether. Certainly, the methods can be modified by
using a more fine-grained conception of agency: Instead of labelling everything
agent a has claimed under K, we can use, for instance, occasion-based labels
or topic—based labelsv as in lCa on Thursday OT ]CPolitician about tazes before elections:
Then only certain parts of an agent’s total knowledge can be taken into consid-
eration.

Similarly, in the present system it is not possible to infer from contradictory
reports that their disjunction must hold, contrary to e.g. [§]. If one witness claims
that a car seen was black and another says it was red, it is often inferred that it
must have been either black or red, but not white, for instance. This inference is
not directly supported in our approach but must be implemented as a meta-level
principle: If it is distributed knowledge within one consistent subset of agents
that the car is black and within another that the car is red, we may want to
conclude that it is either black or red. In a similar fashion meta-level principles
are required for implementing other conflict-resolution methods like accepting a
view supported by a majority of agents.

Another application area is cooperative problem solving, where it is assumed
that all information is correct and the agents work together to solve theoretical or
practical reasoning problems. Then distributed knowledge can be used to identify
the collection of agents needed to provide a solution to a problem. Suppose,
for instance, that the agents are asked to find out whether B holds. Suppose
that we have in our use the following sentences obtained from agents 1 and 2:
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Ki1(A DC B), Ko(K3AV K3 ~A). We are interested in the truth of B, and the
first agent knows that another proposition, A, is equivalent to B, and the second
agent knows that a third agent knows whether this proposition A holds. Now
agents 1,2 and 3, distributively know whether B holds but, in fact, after getting
from agent 2 information concerning agent 3’s knowledge, agent 2 is not needed
anymore, because it is actually distributed knowledge between 1 and 3 alone
whether B is the case, as can be seen from the derivation below:

y:A...=>...,y: A y:B,...= ...,y: B

LD
y:Ay: ADB,y: BD A xRy, xRy, x: K3A,... = x: Dy 3y ~B,y: B

LK
y:ADB,y: BD A,zR1y, 2R3y, v : K3A,... = x: Dy 3y ~B,y: B 3
L&
y:ADC B,zR1y, 2R3y, x : K3A,... = x: Dy 33 ~B,y: B
K
zR1y,xR3y,x: K3A,zRox,z: K1(ADC B),... = x: D13y ~B,y: B !
D (1,3}

z: K3A zRoz,x: K1(ADC B),z: K2(K3AV K3 ~A) = = : Dy 33B,x: Dy 33 ~B
z: KzA,zRox,z: K1(ADC B),x: K2(K3AV K3 ~A) = 2 : D13y BV D133 ~B
@ KsAV Kg ~A, 2Rom, ot K1(ADC B),w: Ka(KsAV Kg ~A) = z: Dy 53 BV Dyy.3y ~B L;:
zRox,x: K1(ADC B),z: K2(K3AV K3 ~A) = x:Dyy1 3BV D13y ~B et
z:Ki(ADC B),x: K2(K3AV K3 ~A) = 2 :Dy1,3BV D133 ~B

RV

The branch marked with dots derives the sequent
x:K3 NA, Ry, x: Ky (A DC B), x:ICQ(]CgA V K3 NA):> x:'D{Lg}B V D{Lg} ~B

It is slightly more complicated because of the negation but is derivable as well.
In this example, information provided by a collection of agents was used to
find out another collection capable of providing an answer to the original query.
The agents in the first group do not know the answer (it is not the case that
Dy1,9yB V Dyy 23 ~B), but they know who knows the answer (it is the case that
Dy1,9y(Dy1,3yB V Dy 33 ~B)). Agent 2’s knowledge was crucial for finding out
the set of agents needed to solve the original problem, but the actual query can
now be given as a task for agents 1 and 3 to co-operatively solve. Thus, distrib-
uted knowledge gives a way of reasoning about informants and their knowledge
without requiring that the reasoning agent possesses the actual knowledge. It
may be enough if the agent can find out who has the knowledge, as is often the
case in real life situations.

5 Conclusions and Future Work

We have here presented a sequent calculus system for formal reasoning in multi-
agent epistemic logic with operators for distributed knowledge. Our system en-
joys the structural properties that support proof search that starts from the
conclusion to be derived. Because the rules are invertible, there is no need for a
backtracking mechanism, since if the conclusion is derivable also the premisses
are guaranteed to be derivable. Admissibility of the contraction rules guarantees
that rules that only produce duplications of the existing formulas need not be
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considered in the proof search. Finally, admissibility of cut is crucial for delim-
iting the space of the proof search, because it ensures that no arbitrary new
formulas need to be constructed during the search.

Recent literature ([12], [I3]) has emphasized the importance of certain prop-
erties for what should be appropriately called “distributed knowledge”. Among
such properties is the principle of full communication: Whenever a statement A
is distributed knowledge within a group, it should be possible to derive A from
what the agents individually know. As discussed in [12], the syntactic form of the
principle roughly corresponds to invertibility of rule [B] which does not hold in
general, as a simple Kripke countermodel shows. A characterization of the epis-
temic models that obey the principle is given in [I3]. We can make the principle
of full communication part of our system by incorporating the model-theoretic
properties in the form of rules for the accessibility relation. First we observe that
if the accessibility relations for the modalities of individual knowledge K, are
“canonical,” i.e., satisfy

xR,y iff for all A(zx IF K, A implies y I+ A)

then the principle of full communication holds. Imposing canonicity amounts to
the addition of certain rules such as

x: KA T = Ay: A -
I'= A zRyy ‘

where A is an arbitrary formula not in I'; A, and

y:Ax: KA xRy, I’ = A
x: K A 2Ry, I = A

It is not difficult, although not completely straightforward, to show that the
structural properties of the system are maintained by the addition. For instance,
for proving admissibility of contraction and cut, a measure of complexity has to
be defined in such a way that the weight of relational atoms is greater than the
weight of labelled formulas. This is unproblematic as it can be done consistently
with the earlier requirements in the proofs of the structural properties of the
basic epistemic system. The details will be left for subsequent work.
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Abstract. Over the years, Logic Programming has proved to be a good
and natural tool for expressing, querying and manipulating explicit
knowledge in many areas of computer science. However, it is not so easy
to use in dynamic environments. Evolving Logic Programs (EVOLP)
are an elegant and powerful extension of Logic Programming suitable
for Multi-Agent Systems, planning and other uses where information
tends to change dynamically. In this paper we characterize EVOLP
by transforming it into an equivalent normal logic program over an
extended language, that serves as a basis of an existing implementation.
Then we prove that the proposed transformation is sound and complete
and examine its computational complexity.

1 Introduction

Construction of intelligent agents is one of the main matters of artificial in-
telligence. Computational Logic has shown to be a good tool for both symbolic
knowledge representation and reasoning, with fruitful application in Multi-Agent
Systems.

Examples of the success of Computational Logic in Multi-Agent Systems in-
clude IMPACT [1I2], 3APL [3l4], Jason [5], DALI [6], ProSOCS [7], FLUX [§]
and ConGolog [9], to name a few. For a survey on some of these systems, as well
as others, see [TOTTIT2].

Computational Logic, and Logic Programming in particular, can be seen as
a good representation language for static knowledge. However, agents must be
capable of operating independently in a partially observable environment that
may change unexpectedly. Therefore, they need to be able to evolve, both due
to self-updates and updates from the environment, and change their model of
the world accordingly. If we are to move to such more open and dynamic en-
vironments, we must consider ways and means of representing and integrating
knowledge updates from external as well as internal sources.

In fact, an agent should not only comprise knowledge about each state, but
also knowledge about the transitions between states. The latter may represent
the agent’s knowledge about the environment’s evolution, coupled to its own
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behaviour and evolution. The lack of rich mechanisms to represent and reason
about dynamic knowledge and agents i.e. represent and reason about environ-
ments where not only some facts about it change, but also the rules that govern
it, and where the behaviours of agents also change, is common to the above
mentioned systems.

Much research in the last decade has been devoted to finding a good way of
updating knowledge bases represented by logic programs [I3TAIT5ITETITSITI].
A sequence of logic programs where each program represents a supervenient
state of the world was called a Dynamic Logic Program (DLP). Finding a suit-
able semantics for DLPs became the first step on one of the paths to using Logic
Programming in Multi-Agent Systems. Quite a number of semantics with differ-
ent properties were introduced [TGII7IT8ITY]. We will only mention the Dynamic
Stable Model semantics [I7] that was later improved and called Refined Dynamic
Stable Models [I9]. This is also the semantics used throughout this work. For a
more comprehensive overview of semantics for DLPs see [I820121].

Although Dynamic Logic Programming provides a semantics for a sequence
of states of the world expressed as logic programs, it doesn’t offer a mechanism
for constructing these programs. Update languages like LUPS [22], EPT [23],
KUL and KABUL [I§] were developed for the purpose of specifying transitions
between the states of the world. Each of them defines special types of rules
for adding and deleting rules from programs in the sequence. Evolving Logic
Programs (EVOLP) [24] also comes from this line of work, but while its pre-
decessors were becoming more and more complicated as more constructs were
being added, EVOLP is a simple, yet very powerful extension of traditional logic
programming.

EVOLP generalizes Answer-set Programming [25] to allow for the specification
of a program’s own evolution, in a single unified way. Furthermore, EVOLP also
permits, besides internal or self updates, for updates arising from the environ-
ment. The resulting language provides a simpler, and more general, formulation
of logic program updating, running close to traditional LP doctrine, setting it-
self on a firm formal basis in which to express, implement, and reason about
dynamic knowledge bases, opening up several interesting research topics.

Indeed, EVOLP can adequately express the semantics resulting from succes-
sive updates to logic programs, considered as incremental specifications of agents,
and whose effect can be contextual. Syntactically, evolving logic programs are
just generalized logic programsﬂ. But semantically, they permit to reason about
updates of the program itself. The language of EVOLP contains a special pred-
icate assert/1 whose sole argument is a full-blown rule. Whenever an assertion
assert(r) is true in a model, the program is updated with rule . The process is
then further iterated with the new program.

Whenever the program semantics allows for several possible program models,
evolution branching occurs, and several evolution sequences are made possible.
This branching can be used to specify the evolution of a situation in the pres-
ence of incomplete information. Moreover, the ability of EVOLP to nest rule

! Logic programs that allow for rules with default negated literals in their heads.
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assertions within assertions allows rule updates to be themselves updated down
the line. Furthermore, the EVOLP language can express self-modifications trig-
gered by the evolution context itself, present or future — assert literals included in
rule bodies allow for looking ahead on some program changes and acting on that
knowledge before the changes occur. In contradistinction to other approaches,
EVOLP also automatically and appropriately deals with the possible contradic-
tions arising from successive specification changes and refinements (via Dynamic
Logic Programming).

The aim of this work is to provide the basis for an operational semantics for
EVOLP, based on a sound and complete transformational semantics for EVOLP,
i.e. define a transformation that, given an evolving logic program and a sequence
of events, produces an equivalent normal logic program over an extended lan-
guage. Such a transformation, together with an ASP solver, is the basis of our
implementation of EVOLP under the evolution stable model semanticdd. Cur-
rently, the only somehow similar implementation appears in [26] and only for a
limited constructive view of EVOLP. More information about the implementa-
tion can be found in [27].

We also examine the complexity of the defined transformation. This is per-
formed by inferring both a lower and an upper bound for the size of the trans-
formed program.

The remainder of this work is structured as follows: in Sect. [2] we introduce
the syntax and semantics of EVOLP; in Sect. Bl we define the transformation;
in Sect. @l we show that the proposed transformation is sound and complete; in
Sect. Bl we examine the complexity of the transformation; in Sect. Gl we conclude
and sketch some possible directions of future work.

2 Background: Concepts and Notation

We start with the usual preliminaries: Let £ be a set of propositional atoms.
A default literal is an atom preceded by not. A literal is either an atom or a
default literal. A rule r is an ordered pair (H(r), B(r)) where H(r) (dubbed the
head of the rule) is a literal and B(r) (dubbed the body of the rule) is a finite
set of literals. A rule with H(r) = Lo and B(r) = { L1, Lo, ..., L, } will simply
be written as

L0<—L1,L27...,Ln. (1)

If H(r) = A (resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A).
Two rules r,r" are conflicting, denoted by r x r’, iff H(r) = not H(r"). We will
say a literal L appears in a rule (@) iff the set { L,not L } N{ Lo, L1, Lo, ..., L, }
is non-empty.

A generalized logic program (GLP) over L is a set of rules. A literal appears
in a GLP iff it appears in at least one of its rules.

An interpretation of L is any set of atoms I C L. An atom A is true in I,
denoted by I = A, iff A € I, and false otherwise. A default literal not A is true

2 A web based demo is available at http://centria.di.fct.unl.pt/evolp/
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Fig. 1. Semantics of EVOLP (without events)

in I, denoted by I = not A, iff A ¢ I, and false otherwise. A set of literals B
is true in [ iff each literal in B is true in I. Given an interpretation I we also
define 1= < {notA|Ae L\I} and I* = © T UT~. An interpretation M is a
stable model of a GLP P iff M* = least(P U M) where least(-) denotes the
least model of the definite program obtained from the argument program by
treating all default literals as new atoms.

Definition 1. A dynamic logic program (DLP) is a sequence of GLPs. Let
P = (P1,Pa...,P,) be a DLP. We use p(P) to denote the multiset of all rules
appearing in the programs Py, Py, ..., P, and P* (1 <i < n) to denote the i-th
component of P, i.e. P;. Given a DLP P and an interpretation I we define

Def(P,1) = {not A | (#r € p(P))(H(r) = AN = B(r) } (2)
Re’ (P, 1) € {re P! | (3k,7") (k> jAr e PP Arx ' ATEB())} ,
3)

Rej(P,I) U Rej (P, 1) . (4)

i=1

An interpretation M is a (refined) dynamic stable model of a DLP P iff M* =
least([p(P) \ Rej(P, M)] UDef(P, M)).

Definition 2. Let L be a set of propositional atoms (not containing the predi-
cate assert/1). The extended language Lassert 05 defined inductively as follows:

1. All propositional atoms in L are propositional atoms in Lassert -
2. If r is a rule over Lassert then assert(r) is a propositional atom in Lagsert-
3. Nothing else is a propositional atom in Lassert-

An evolving logic program over a language L is a GLP over Lassert- An event
sequence over L is a sequence of evolving logic programs over L.
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Table 1. Evolution of the program in Example [ (“assert” is shortened to “ass”)

Time Program Event Model

. P {no coffee, write thesis,
ass(tired <)}

2 {tired «— . } E> {tired,no coffee, make coffee}

3 ] Es  {tired, drink coffee, ass(not tired <)}

{write thesis, ass(tired «),
. ass(not drink coffee <),

4 { not tired « . } E, .
ass(sleep « tired),
ass(ass(not tired <) « sleep)}

{tired « .,

not drink coffee + .,
. Es {tired, sleep, ass(not tired <)}
sleep « tired.,

ass(not tired <) « sleep.}

Definition 3. An evolution interpretation of length n of an evolving pro-
gram P over L is a finite sequence T = (I1,1s,...,I,) of interpretations
of Lassert- The evolution trace associated with an evolution interpretation
Z of P is the sequence of programs (Pi,Ps,...,P,) where P, = P and
Py ={r|assert(r) € I} forallie {1,2,...,n—1}.

Definition 4. An evolution interpretation M = (M, Ms,...,M,) of an
evolving logic program P with evolution trace (Py,Ps,...,P,) is an evolu-
tion stable model of P given an event sequence (E1, Es, ..., E,) iff for every

i€{1,2,...,n} M; is a dynamic stable model of (P, Ps,...,Pi_1, P, UE;).
Example 1. Consider the following evolving logic program:

P: write thesis «— not tired.

D

drink coffee « tired, not no coffee.

make coffee « tired, no coffee.

A~~~ Y~~~
co
—_— — —

assert(tired «) « write thesis.

assert(not tired «) « drink coffee. 9

P could be an initial program of a simple agent (e.g. Mary) who is trying to write
a thesis. Mary can do 3 things: write the thesis, drink coffee or make coffee. She
also relies on a sensor that sends her the fact (no coffee «— .) as an event in case
no coffee is available. The meaning of the rules is as follows: Rule () says Mary’s
writing the thesis as long as she’s not tired. Rules (@) and (@) tell her what to
do when she’s tired. Rules (8) and (@) specify whether she will be tired in the
next evolution step. If she’s writing the thesis, she will get tired. Drinking coffee
has an opposite effect. If she’s making coffee, no change will take place. Table[I]
shows the evolution of P given the sequence of events & = (FEy, Eo, E3, Ey4, E5)
where F; = F5 = {no coffee «— .}, E3 = E5 = () and
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E,: assert(not drink coffee «) «— .
assert(sleep « tired) « .

assert(assert(not tired «) « sleep) «— .

We start off with P and E; and compute the first model. It says there is no
coffee, Mary is writing her thesis and in the next step she will get tired. We infer
the second program from the model, add the second event and compute the
second model. Now Mary is tired and makes coffee. This makes the sensor stop
complaining in the third step (i.e. E3 = ()) and Mary, still tired, drinks coffee.
In the fourth step Mary is writing her thesis again and she is reprogrammed —
when she gets tired she will take a nap instead of drinking coffee. In the fifth
step the new rules are used — Mary is tired and sleeping.

The previous example is very simple and its main purpose is to demonstrate
how the definitions of semantics of EVOLP work. It is by no means exhaustive
and doesn’t demonstrate the full power of the language. In the next example we
will briefly show more complex rules that are a part of a more complex example
where EVOLP is used as to implement a fairly sophisticated email agent. For
the full version of the example the reader is referred to [28]. Another different
example that makes use of an agent architecture based on EVOLP can be found

in [26].

Ezxample 2. The email agent example is composed of an evolving logic program
P and a sequence of events (E1, Es, ..., F16). We will only pick some specific
rules from the example to demonstrate the constructs that can be specified using
EVOLP.

First let’s consider the following two rules:

assert(in(M, Fi,) «—) < move(M, Frrom, Fio), (M, From ).
assert(not in(M, Fyrom) <) < move(M, Frrom, Fio), notin(M, Fy,).

They are used in [28] as a part of the base program of an email agent and
encode a message moving mechanism. The first rule specifies that if a command
received to move a message M from folder F'y,,p, to folder Fy, and it is currently
in folder Fyrom (i.e. the command is a valid one), then in the next evolution step
the message will be in folder F},. The second rule deletes M from folder Flyrom
in case it is different from the destination folder F},. Similar rules are used
to remember new messages and delete them from folders and remember sent
messages.

Another three rules encode an evolving predicate that decides whether a mes-
sage is spam or not:

r1: spam(F, S, B) < contains(S, “credit”).
ro 1 notspam(F, S, B) « contains(F, “accountant”).
r3 spam(F, S, B) < contains(S, “credit”), contains(S, “Fwd”).
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They are asserted one by one in the events, i.e. assert(r1) € E;, assert(ry) € Ej;
and assert(rs) € Ej for some i < j < k. The first rule defines a spam message
as any message having “credit” in its subject. This is further updated by the
second rule — messages whose sender contains the word “accountant” are not
considered as spam (even if they contain “credit” in their body). The third
rule further updates the way messages are classified — messages containing both
“credit” and “Fwd” in their subject are considered spam (even if they come from
the accountant).
The last rule we are going to mention encodes a more complex behaviour:

assert(send(R, S, B) «+ newmsg(M, F, S, B), contains(S, I D), assign(ID, R)) «
newmsg(M, R, ID, B), contains(B, “accept”).

The meaning of the rule is as follows: If a message is received from a reviewer
R that contains a paper identification 1D in the subject and the word “accept”
in its body, then all future messages regarding this paper will be forwarded to
the reviewer R in case he has been assigned the paper I D. Multiple rules of this
kind can be used to configure a simple paper submission system that keeps track
of papers, deadlines, authors and reviewers and manages the communication
between them.

3 Transformation into a Normal Logic Program

Now we will define a transformation which turns an evolving logic program P
together with an event sequence £ of length n into a normal logic program Pg
over an extended language. We will prove later that the stable models of Pg are
in one-to-one correspondence with the evolution stable models of P given £.

The transformation is essentially a multiple parallel usage of a similar trans-
formation for DLPs introduced in [29]. First we need to define the extended
language over which we will construct the resulting program:

def ; ; .
['trans é {A],Afleg ‘ A € ['assert Al S] S n}

U { rej(A7,i), rej(Aleg, i) | A€ Lassert N1<j<nA0<i<j}
U{u} .

Atoms of the form A7 and AJ,, in the extended language allow us to compress

the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. B)) into just one interpretation of Lians. Atoms of the form rej(A7,7) and

rej(Ajeg, 1) are needed for rule rejection simulation. The atom u will serve to
formulate constraints needed to eliminate some unwanted models of Pe.

To simplify the notation in the transformation’s definition, we’ll use the fol-
lowing conventions: Let L be a literal over Lagert, Body a set of literals over

Lassert and j a natural number. Then:
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— If L is an atom A, then L7 is A7 and L, is A},

— If L is a default literal not A, then L7 is Aﬁeg and Lf;eg is A
— Body’ = {L’ | L € Body }.

Definition 5. Let P be an evolving logic program and & = (Fy,Ea,...,E,)
an event sequence. By a transformational equivalent of P given £ we mean the
normal logic program Pe = P(%UPSQU. ..UPg over Lirans, where each Pg consists
of these siz groups of rules:

1. Rewritten program rules. For every rule (L «+ Body.) € P, Pg contains
the rule

L7 — Body’,  notrej(L?, 1).

2. Rewritten event rules. For every rule (L «— Body.) € Ej, Pg contains
the rule

L7 — Body’ ,notrej(L7, j).

3. Assertable rules. For every rule r = (L < Body.) over Lassert and all i,
1 < i < j, such that (assert(r))"~! is in the head of some rule of PL ', P}
contains the rule

L7 — Body’, (assert(r))' !, notrej(L’, 7).

4. Default assumptions. For every atom A € Lassert such that A7 or A{leg

appears in some rule of Pg (from the previous groups of rules), Pg also
contains the rule

Afleg « notrej(A].,,0).
5. Rejection rules. For every rule of Pg of the form
L7 «— Body,not rej(LjJ)ﬁ

Pg also contains the rules

rej(Lyeg, p) < Body. (10)
rej(L?, q) « rej(L7,i). (11)

where:

(a) p < i is the largest index such that Pg contains a rule with the literal
not rej(Lfleg,p) in its body. If no such p exists, then ([I0Q) is not in Pg.

(b) q < i is the largest index such that Pg contains a rule with the literal
notrej(L7, q) in its body. If no such q exists, then ([0 is not in Pg.

3Tt can be a rewritten program rule, a rewritten event rule or an assertable rule
(default assumptions never satisfy the further con(_iitions). The set Body contains all
literals from the rule’s body except the notrej(L’, ) literal.
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6. Totality constraints. For alli € {1,2,...,j} and every atom A € Lassert
such that P} contains rules of the form

A — Body,,, not rej( A7, ).

Al Body, , not rej(Afeg, 1)

neg
Pg also contains the constraint
J J
u < not u,not A7, not 4;,.

Each P! contains rules for simulating the DLP (P, Py, Ps, ..., Pj_1, P; U E;)
from the definition of evolution stable model (Definition []). For the simulation
we use the transformational semantics from [29]. We also rewrite all atoms from
the original rules as a new set of j-indexed atoms.

The first two groups of rules in P (rewritten program rules and rewritten
event rules) contain the rewritten forms of rules from P and E;. However, we
don’t know the exact contents of P, Ps, ..., P}, so the group of assertable rules
contains all rules that can possibly occur in those programs. Each of these rules
also has an atom of the form (assert(r))~! in its body. We will call it the
assertion guard of the rule and it assures the rule is only used in case it was
actually asserted. These atoms are also the only connection between the rules of
P} and the rules in P UPZU...UPL.

The default assumptions are defined similarly as in [29], and they have the
same function — they simulate the set of defaults defined in Def. [l

Rewritten program rules, rewritten event rules, assertable rules and default
assumptions also contain a default literal of the form notrej(L7,4) in their bod-
ies. We will call this literal the rejection guard of the rule and the natural number
1 the level of the rule. Together with the rejection rules, the rejection guard pro-
vides a means of rejecting a rule by a higher level rule, similarly as in the set of
rejected rules (@).

Rejection rules are responsible for inferring the correct rej(L7, i) atoms. The first
kind of rules introduces the rejection of rules with a conflicting literal in their head
and a level that is the maximum that is also less or equal to i. The second kind of
rules takes care of propagating the rejection to rules with an even lower level.

Totality constraints are important in the case that rules of the same level reject
each other and no rule of higher level resolves their conflict. An interpretation
causing such a situation is not a refined dynamic stable model (more details can
be found in [I9]). Totality constraints are needed to eliminate the superfluous
stable models of Pg¢ originating from these situations.

The following example illustrates how the transformation works:

Example 3. Let’s take the evolving logic program

P assert(a <) < nota.

assert(not a <) « a.

and a sequence of two empty events €. The defined transformation would produce
the following transformed program:
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Pe: (assert(a «))' — neg, not rej((assert(a «))*, 1). (12)
(assert(nota «))' < a', not rej((assert(not a «))*, 1). (13)
ieg — notrej(al Apeg: 0)- (14)

(assert(a «))? — neg, not rej((assert(a <)), 1). (15)
(assert(not a «))? « a? not rej((assert(not a «)), 1). (16)
a? « (assert(a «))', not rej(a?, 2). (17)

aﬁeg (assert(not a «))!, not rej(a’ Anegr 2)- (18)

aieg « not rej(aZ neg> 0)- (19)

rej(a2,,2) — (assert(a —))". (20)

rej(a?,2) « (assert(nota «))*. (21)
rej(a2,,0) — rej(aZ,,2). (22)

u « not u, not a’, not aneg (23)

The rules (I2) to ([ simulate the first evolution step — they are 2 rewritten
program rules and one default assumption. Rules (X)) and (I6) are rewritten
program rules for the second evolution step. In this step, two new rules can be
asserted — (I7)) and ([I8)) are the corresponding assertable rules. (IJ) is a default
assumption, (20) to 2] are rejection rules and ([23)) is a totality constraint.

P¢ has exactly one stable model

1

M = {ab,, (assert(a —))", a2, (assert(not a —))?, rej(a2ey. 2), 16j (425 0)} -

Tt directly corresponds to the single evolution stable model M = (M, Ms) of P
given €& where My = {assert(a <) } and My = { a,assert(nota <) }.

4 Soundness and Completeness

The following 2 theorems show how the stable models of the transformed pro-
gram correspond to the evolution stable models of the input program. Only
sketches of proofs are provided, their full versions can be found in [30].

Theorem 1 (Soundness). Let P be an evolving logic program, & =
(E1, Es,...,E,) an event sequence, N a stable model of Pg,

M; = {AE Eassert ‘ AZ EN} fOT’alliE {172,...,”,} .
Then (My, Ms, ..., M,) is an evolution stable model of P given E.

Proof (sketch). Let (Py, Ps, ..., P,) be the evolution trace associated with the
evolution interpretation M = (My, Mo, ..., M,). According to Def. @, M is an
evolution stable model of P given £ iff for everyi € {1,2,...,n} M; is a dynamic
stable model of (P, Ps,...,P,_1,P; U E;). Hence we choose one arbitrary but
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fixed j € {1,2,...,n} and show that M, is a dynamic stable model of P =
(Pl,P27...7Pj_17Pj UE])

M; contains exactly those atoms that have their corresponding j-indexed
counterpart inferred by rules in Pg as defined in Def. Bl What we need to show
is that each rule of Pg either corresponds to some rule in Py, P, ..., P;, Ej;, or is
used to simulate the rule-rejection mechanism behind Dynamic Logic Program-
ming, or has no effect on the model.

It can be seen quite easily that rewritten program rules and rewritten event
rules correspond to rules in P; = P and Fj, respectively. They just contain one
extra literal in their body — the rejection guard that is used to block them in
case they are rejected.

An assertable rule, added as a rewritten form of an original rule r, can only
be fired in case an atom of the form (assert(r))*~! is true in N. But then
assert(r) is true in M;_; and thus r € P;. On the other hand, if r € P; for
some i € {2,3,...,7}, then assert(r) € M;_; and hence (assert(r))"! € N.
So each rewritten program rule, rewritten event rule and assertable rule either
corresponds to some rule in the dynamic logic program P, or has no effect on
the resulting model because it cannot be fired.

Default assumptions in PZ are present for all atoms of the program. They
simulate the set of defaults from Def. [[] and contain, just like all the other rules
before, the rejection guard in their body that can block their usage in case a
higher level rule rejects them by having an opposite literal in its head and its
body satisfied in N.

The rejection rules together with the totality constraints can be proved to
behave as follows:

1. For each atom A’ appearing in Pg they force exactly one of A7 and A{leg to
be a member of N.

2. They infer an atom rej(L7, i) with i > 0 iff some rule r € Rej’(P, M;) has L
in its head.

3. They infer an atom rej(L7,0) iff L is a default literal not A and not A ¢
Def(P, I).

The first point implies that the resulting model will be consistent with respect to
the j-indexed versions of original literals. Correct simulation of the rule-rejection
mechanism is a consequence of the second point. The third point ensures that
only the appropriate subset of default assumptions is used.

Using the propositions from the previous paragraphs, it can be proved (by
induction on the number of applications of the immediate consequence operator)
that M is indeed a dynamic stable model of P. O

Theorem 2 (Completeness). Let P be an evolving logic program, & =
(E1, Ea,...,E,) an event sequence, M = (M1, Ms, ..., M,) an evolution stable
model of P given &, (P1, Pa, ..., P,) the evolution trace associated with M and

'Pi:(PhPQ,...,.Pi,hPiUEi) for allie{lﬂ,...,n}.
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Furthermore, let

N={L'|ie{1,2,....,n} AM; = LAL" appears in Pg}
U{rej(Li,k) |1 <k <i<nAQ3reRef (P, My))(H(r)=1L)}
U{rej(A’..,0) i€ {1,2,....,n} Anot A ¢ Def(P;, M;) }

neg’
Then N s a stable model of Pe.

Proof (sketch). Let R = least(Ps U N™). We need to prove that N* = R. This
can be proved in three steps:

1. In the first step we must prove for every literal L of L,sert and all j €
{1,2,...,n} that L; € N <= L; € R. This can be proved by complete
induction on j, using ideas very similar to those in the proof of soundness.

2. The second step is to prove that N and R are identical on the set of atoms
of the form rej(L?,i) for all L € Lagsert, every j € {1,2,...,n} and every
i€ {0,1,...,5}. If rej(L7,i) € N, then some rule r € Rej’(P;, M;) has
L in its head. This rule must have been rejected by some other rule r’.
P} must contain a rule corresponding to ’ that will cause the presence of
appropriate rejection rules. Consequently, rej(L”?, i) will eventually be added
to R. A similar idea can be used to prove the converse implication.

3. The last matter that needs to be proved is that none of the totality con-
straints in Pg has been broken, i.e. that w ¢ R. This can be proved by
contradiction: consider one of the constraints if broken. Then for some atom
A € Lassers we have not A7, not A}, € R and also that both A7 and AJ_,

neg

appear in Pg. Furthermore, not A7, not A/, € N~ and hence A7, A} . ¢ N.
But then we have both M; = A and M; }~ not A — a contradiction. 0

5 Complexity of the Transformation

The computational complexity of the proposed transformation is interesting from
multiple viewpoints:

— it directly influences the computational complexity of the implementation of
EVOLP that is based on it [27],

— it allows to identify the most time-consuming parts of the transformation
which can in turn be optimized to perform better,

— it reveals the branching factor that EVOLP is capable of, i.e. it demonstrates
the expressivity of EVOLP.

The rules for generating the transformed program are quite simple, so the algo-
rithm performing the transformation will also be reasonably simple. What really
matters is the size and number of rules of the transformed program. The big-
ger the transformed program will be, the longer it will take to generate it and
perform any further processing. We are also interested in which group of rules
is the biggest and how it can be made smaller.
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The size of each generated rule is either constant (default assumptions, totality
constraints and propagating rejection rules) or just constantly bigger than the
corresponding original rule. Therefore, we will concentrate on the number of
generated rules. First we will derive both a lower and an upper bound for the
number of rules of the transformed program. After we have the bounds, we will
draw some conclusions. For the rest of this section we will assume P is a finite
evolving logic program and £ = (E1, Es, ..., E,) is a sequence of finite events.

5.1 Lower Bound

We know the transformed program Pg contains n|P| rewritten program rules
and Z;‘L:1 |E;| rewritten event rules. So a very simple lower bound for |Pe| is:

|Pe| = n|P|+)_|Ej| . (24)
j=1
Equality can be achieved only if P = Fy = Ey = ... = E,, = (). Otherwise, Pe¢

will also contain some default assumptions and rejection rules.

5.2 Number of Assertable Rules

In order to derive an upper bound for |Pg|, we will first need to make an ap-
proximation of the number of assertable rules. Let A be the set of all assertable
rules in Pe. In Appendix [Al it is shown that

nd—n - n—3)3+5n—j
A<t Yy T (25)
=1

It is also shown that in case we disallow nested asserts (i.e. a rule within an
assert atom must not contain another assert atom in its head), we have

n2—n - .
Al <1 " S = I (26)
j=1

5.3 Upper Bound

We already know the number of rewritten program rules and rewritten event
rules in the transformed program and an upper bound for the number of as-
sertable rules. Now we need to deal with the default assumptions, rejection rules
and totality constraints.

How many default assumptions can there be? Both P and the events are finite
so only a finite set of atoms from L,ssert can be used in them. Let this set be
Lpe. BEach atom in this set can generate up to n default assumptions.

Each rewritten program rule, rewritten event rule and assertable rule can
generate at most 2 rejection rules. Two of these rules are needed to generate a
totality constraint.
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Taken together, we have

7 n
|Pe| <, n|P|+> ;| +|Al | +n|Lpel - (27)
j=1

If we use the approximation of |A| (20]), we get the following inequality:

7 n
[Pel <, n|P|+ Y _|Ejl
j=1

G N e D )
P+ D 1B 6 +n| Lpgl
j=1

which can be further simplified to

7 n® +5n - n—3)3+5n—j
pel< g (10 5 e i (TR T ) ) el
j=1

When n is large and program sizes are considered as parameters, we can use the
big-oh notation to get

[Pl = |P|-O(n®) + Y |E;| - O((n—35)°) +nl Lpel - (28)
j=1

In case of programs without nested asserts we can use ([26]) to derive

7 n%+n -~ .
[Pel < o | IPIT +;(n—3+1)|Ey‘\ +n|Lpel ,
or, for large n,
|Pe| = |P|-O(n®) + Y _|Ej| - O(n—j) +n|Lpe| . (29)
j=1

5.4 Conclusion

In this section we examined how big the transformed program can get. Probably
the most obvious and also a very important observation is that the lower bound
@4) for | P¢| implies that the transformed program grows with n, no matter how
big the events are. Hence for large values of n and small events this can lead to
an intractably large transformed program even for tractably large inputs.

The main reason for this is that the transformed program captures all the
possible evolutions of the input program. The expressivity EVOLP encompasses,
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especially the possibility of arbitrary branching based on intermediate models,
makes it intractable to compute all the possible evolutions of even small pro-
grams. In case we are not interested in all or many of the possible evolutions,
this transformation is not suitable as a basis for an implementation. For example
when using EVOLP as an executable specification of a Multi-Agent System, a
constructive view of the language as taken in [26] is more appropriate.

There are, however, also other possible uses of EVOLP where we do care
about the possible evolutions. An example is reasoning about possible futures or
on-line planning as a part of a deliberation of an agent. Verification of a Multi-
Agent System specified in EVOLP is another. We believe the transformation
is appropriate for such applications of EVOLP because the high computational
complexity inherent in these problems is delegated to an answer set solver which
is already optimized to deal with it.

From the upper bound (28] for |P¢| we can also see that the size of the
transformed program depends on the size of the input program, size of events
and n at most polynomially. Furthermore, if we use only (or mostly) rules without
nested asserts, (29) implies we can lower the power of n that |Pg| grows with.

6 Conclusion and Future Work

We have defined a transformational semantics for Evolving Logic Programs and
proved that it is sound and complete. We also examined the computational com-
plexity of the transformation and identified situations in which it is practically
applicable. These include reasoning about possible futures, on-line planning and
verification of systems specified in EVOLP.

Future work can be devoted to optimizations of the transformation. In partic-
ular, the current transformation generates a number of unnecessary default as-
sumptions and rejection rules. This was useful because it made its definition and
proofs of soundness and completeness simpler. Now that these proofs are ready, we
can concentrate on optimizing the transformation and prove more easily what op-
timizations are safe to perform. In many situations it is also possible to share rules
among evolution steps which is another source of possible future optimizations.
The third issue worth examining is the possibility of having a larger transformed
program that performs better with the current answer set solvers.

Another line of work that can be followed involves generalizing the transfor-
mation. The definition can be extended to a language with classical negation.
Another interesting issue is that of identifying a class of evolving logic programs
with variables that is groundable with intuitive results and is general enough to
be usable in practise.
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A  Upper Bound for the Number of Assertable Rules

In this Appendix we derive an upper bound for the number of assertable rules
in the transformed program. We will assume P is a finite evolving logic program
and & = (E1, Ea, ..., E,) is a sequence of finite events. Let A be the set of all
assertable rules in the transformational equivalent Pe of P given £. We will need
some more declarative characterization of the rules in A in order to work with
its cardinality. The following Definition, Lemmas and Theorem provide such
characterization:

Definition 6. Let Eg = (). We define
Ay ¥ (| (3 € PY(H(ry) = assert(r)) } (30)
forallie{2,3,...,.n—1}

A | (Bry € Ay (H(r) = assert(r) }

(31)
U{r | (3rs € E;_1)(H(re) = assert(r1) A H(r1) = assert(r)) }
and for all j € {1,2,...,n—1} also
A O A;U{r|@3r € E;)(H(r) = assert(r)) } . (32)

i=1
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Remark 1. Let j € {1,2,...,n}. Each assertable rule in Pg is fully deter-
mined by its assertion guard, i.e. if we know that it has the assertion guard
(assert(r))*~! and r = (L « Body.), then the assertable rule must be:

L7 — Body’, (assert(r))' !, notrej(L’, 7).
We will make use of this fact in order to make some formulations simpler.

Lemma 1. Letic {1,2,...,n—1},je{i,i+1,...,n—1} andr € A;. Then
Pg“ contains an assertable rule with the assertion guard (assert(r))?.

Proof. We will prove by induction on .

1 Let r € A;. Then some rule r; € P exists such that H(r;) = assert(r). Let
j€{1,2,...,n—1}. Then P} must contain a rewritten program rule with
(assert(r))’ in its head and therefore Pg“ must contain an assertable rule
with the assertion guard (assert(r))’.

2 We assume the claim holds for ¢ and prove it for 7 + 1. Let r € 4,11 and let
jed{i+1,i+2,...,n—1} Two cases are possible:

(a) Some rule r; € A; exists such that H(r;) = assert(r). By the induction
hypothesis we have that Pg contains an assertable rule with the assertion
guard (assert(r1))?~1. This rule has (assert(r))’ in its head. Hence Pg“
contains an assertable rule with the assertion guard (assert(r))?.

(b) Some rule 7o € E; exists such that H(ry) = assert(r1) and H(r1) =
assert(r). Then PZ contains a rewritten event rule with (assert(rq))” in
its head. Hence Pg will contain an assertable rule with the assertion
guard (assert(r1))’ and (assert(r))? in its head. Therefore Pg“ must
contain an assertable rule with the assertion guard (assert(r))’. |

Lemma 2. Let j € {1,2,....,n—1} andr € A;. Then Pg contains a rule with
(assert(r))? in its head.

Proof. Assume that r € A;. Two cases are possible:

a) r € A; for some i € {1,2,...,75}. Then by Lemma [I] we have that Pg“
contains an assertable rule with the assertion guard (assert(r))’. Hence Pg
must contain a rule with (assert(r))? in its head. ‘

b) Some rule y € E; exists such that H(r;) = assert(r). Then P2 contains a
rewritten event rule with (assert(r))’ in its head. O

Lemma 3. Let j € {1,2,...,@— 1} and let v be a rule over Lassert- If Pg
contains a rule with (assert(r))’ in its head, then r € A;.

Proof. We will prove by complete induction on j.

1 The basis can be inferred from the inductive step with j = 1 (the third case
doesn’t have to be examined because P3 contains no assertable rules).

2 We assume the proposition holds for all i € {1,2,...,5 — 1} and prove it
for j. Let’s consider three cases:
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(a) If Pg contains a rewritten program rule r} with (assert(r))’ in its head,
then P contains a rule r; such that H(r1) = assert(r). Hence r € 4; C
A;.

(b) If Pg contains a rewritten event rule rj with (assert(r))? in its head,
then Ej; contains a rule ry such that H(ry) = assert(r). Hence r € A;.

(c) If P? contains an assertable rule with (assert(r))’ in its head, then it
must be of the form

(assert(r))’ — Body’, (assert(r1)) 1, not rej((assert(r))’, i).

where 71 = (assert(r) « Body.) and i < j. So P.~" must contain a rule
with (assert(r1))~! in its head and by the induction hypothesis we have
r1 € A;—1. Two cases are possible again:
i. r1 € Aj, for some h € {1,2,...,i—1} Thenr € A1 C A
ii. Some rule r € E;_1 exists such that H(ry) = assert(r1). We also
have H(r;) = assert(r). Sor € A; C A;. O

Theorem 3. Let j € {1’27"5771_ 1} and let r be a rule over Lassert- Pg
contains a rule with (assert(r))’ in its head iff r € A;.

Proof. Follows directly from Lemmas 2] and O

As a consequence of the theorem we have
Al =) (n—j)]4,] (33)
j=1

because each rule » € A; will generate n — j assertable rules, one in each of
pitt Pg+2, ..., PZ. Now we can make an approximation of |A|. According to

£
B0), @BI) and B2) we have for all j € {1,2,...,n -1}

i1 i
Al <P+ ) |E] A <GP+ 1Bl + > (G —i)|El -
1=1 i=1

Furthermore, by ([33) we have

Al =D (n=5) 4] <> (n-7) (jP+Ej|+Z<j—i>Ei|>

Jj=1 Jj=1 i=1
n n n J
=|P> =)+ > (= DE+D (n—3) (G —i)E] .
j=1 Jj=1 Jj=1 =1
First let’s solve the first sum:

n n n 3_
Sin-g)=ny i-Y =" " (35)
j=1 j=1 j=1

(34)
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The third sum can be simplified as follows:

n J
S tn=5)> (-1 \EI—ZIEIZJ n—i)—j)
j=1 i—1

(n—1)% - (n—1)
=Z|Ei| 6 :
i=1
By (34)), (B5) and (B8 we now have

nd—n - n—75)>%+5n—j
A< 1P oy A

We can also put some extra restrictions on the input program and then look at
the number of assertable rules. For example, if we disallow nested asserts (i.e. a
rule within an assert atom must not contain an assert atom in its head), then we
have |A;| < [P|and |A;| = 0forallj € {2,3,...,n— 1}. Hence |4;| < |P|+|E;|
forall j € {1,2,...,n—1} and

Zn (Pl + |Ej)) = \P\ T - GE
=1 =1
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Abstract. In this paper we are concerned with proposing, analyzing and imple-
menting simple, yet flexible, constructs for multi-agent programming. In particu-
lar, we wish to extend programming languages based on the BDI style of logical
agent model with two such constructs, namely constraints and content/context
sets. These two aspects provide sufficient expressive power to allow us to repre-
sent, simply and with semantic clarity, a wide range of organisational structures
for multi-agent systems. We not only introduce this approach, but provide its for-
mal semantics, through modification of an operational semantics based on the
core of AGENTSPEAK, 3APL and METATEM. In addition, we provide illustra-
tive examples by simulating both constraints and content/context sets within the
Jason interpreter for AGENTSPEAK. In summary, we advocate the use of these
simple constructs in many logic-based BDI languages, by appealing to their ap-
plicability, simplicity and clear semantics.

1 Introduction

We characterise an agent as an autonomous software component having certain goals
and being able to communicate with other agents in order to accomplish these goals [26].
The ability of agents to act independently, to react to unexpected situations and to co-
operate with other agents, has made them a popular choice for developing software
in a number of areas. At one extreme there are agents that are used to search the IN-
TERNET, navigating autonomously in order to retrieve information; these are relatively
lightweight agents, with few goals but significant domain-specific knowledge. At the
other end of the spectrum, there are agents developed for independent process control
in unpredictable environments. This second form of agent is often constructed using
complex software architectures, and they have been applied in areas such as real-time
process control [20/14]]. Perhaps the most impressive use of such agents is as part of
the real-time fault monitoring and diagnosis carried out within the NASA Deep Space
One mission [16].

The key reason why an agent-based approach is advantageous in the modelling and
programming of autonomous systems is that it permits the clear and concise representa-
tion, not just of what the autonomous components within the system do, but why they do
it. This allows us to abstract away from the low-level control aspects and to concentrate
on the key feature of autonomy, namely the goals of the component and the choices it
makes. Thus, in modelling a system in terms of agents, we often describe each agent’s
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beliefs and goals, which in turn determine the agent’s intentions. Such agents then make
decisions about what action to perform, given their current beliefs and goals/intentions.
This kind of approach has been popularised through the influential BDI (Belief-Desire-
Intention) model of agent-based systems and, although this representation of be-
haviour using mental notions is initially unusual, it has several benefits. The first is
that, ideally, it abstracts away from low-level issues: we simply present some goal that
we wish to be achieved, and we expect the agent to act in what we would consider a
reasonable, or rational, way given such a goal. Secondly, because we are used to under-
standing and predicting the behaviour of rational agents, the behaviour of autonomous
software should be relatively easy for humans to understand and predict too. The mod-
elling of complex systems, even space exploration systems, in terms of rational agents
captured within the BDI approach, has been very successful [14123122]. Unsurprisingly,
this has led to many novel (usually, logic-based) programming languages based (at least
in some part) upon this model; these are often termed BDI Languages.

When researchers and developers experimented with these languages and used them
for a wider variety of applications it became clear that open multi-agent systems did not
scale well without a further abstraction to capture the working relationships between
agents, groups of agents and their environment [T0/I8]. Furthermore, only a cursory
study of human societies is needed to realise that increased levels of productivity and
efficiency are realised by societies with effective frameworks that encourage coopera-
tive behaviour amongst its population. The study of agent interaction, cooperation and
organisation is therefore of current interest in the agent research community but,
although a wide variety of BDI languages have been developed [1]], few have strong and
flexible mechanisms for organising multiple agents, and those that do provide no agree-
ment on their organisational mechanisms. Thus, while BDI languages have converged
to a common core relating to the activity of individual agents [3], no such convergence
is apparent in terms of multi-agent structuring and organisation.

1.1 Agent Organisation

In this section we briefly describe some of the more influential agent-organisational
proposals for the purpose of highlighting typical applications of the language constructs
we describe in the next section. For a concise but isolated description of each proposal
we refer the reader to our companion paper [12].

With a respected philosophical view on agent co-operation, Cohen and Levesque
produced a significant paper “Teamwork” [3]] in which they persuasively argue that a
team of agents should not be modelled as an aggregate agent and propose new (logical)
concepts of joint intentions, joint commitments and joint persistent goals to ensure that
teamwork does not break down due to any divergence of individual team members’
beliefs or intentions. Tidhar [24] introduced the concept of ream-oriented programming
with social structure; an agent-centred approach that defines joint goals and intentions
for teams but stops short of forcing individual team members to adopt those goals and
intentions. Ferber et al. [8] present the case for an organisational-centred approach to
the design and engineering of complex multi-agent systems. They propose a model for
designing multi-agent systems in terms of agents, roles and groups. Agents and groups
are proposed as distinct first class entities. Dignum, Esteva, Sierra and Vazquez-Salceda
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made formal [[7]] and practical [6/23] contributions to a method of agent organisation that
enjoys much current popularity [[17]; that of institutions. An electronic institution aims
to provide an open framework in which agents can contribute to the goals of society
without sacrificing its own self-interest. A key concept is that of institutional norms.
Perhaps the most noteworthy aspect of these proposals is the change of focus from the
agents themselves onto the interactions that take place between agents.

In this paper we consider extending basic BDI languages with simple, yet powerful,
constructs that allow the development of a wide range of organisational structures. Thus,
in Section[2we introduce the concepts behind the new constructs, in particular showing
how they relate to typical BDI language semantics. To clarify this further, in Section[3
we provide the core semantics of a subset of AGENTSPEAK [19/2] incorporating the
new concepts; we call this language AGENTSPEAK™. To show how these concepts
can be used, in Section ] (and in a companion paper [[12]), we outline how a variety of
organisational structures can be expressed using these simple constructs, present several
case studies, and even provide some implementations within AGENTSPEAK. Finally, in
Section [Sl we provide concluding remarks. Thus, this paper introduces the concepts
and provides semantics, while [12] shows how this approach captures the core of the
leading organisational mechanisms.

We begin by introducing the concepts; we do this by first considering the core oper-
ational aspects of BDI languages, describe some agent-organisational abstractions and
then show how our new concepts affect agent operation.

2 Introducing the Concepts

Although all BDI languages have a family resemblance, their syntax and semantics can
vary immensely. We therefore use a loose unifying framework for our discussion into
which we believe most BDI languages will fifl, though not always elegantly.

Our semantic framework assumes that a BDI language specifies the behaviour of
an agent in terms of the agent’s current state, S, which changes over time and a fixed
specification, SP, which does not. Thus, an agent is viewed as a tuple < S, SP >. S
consists, amongst other things, of a set of beliefs, B. The BDI programming language
then has a process for determining whether a given belief b follows from the current
state which we will write as S = b, since these are often logical mechanisms.

The BDI programming language has a specific operation, select instruction,
which acts on the state according to the specification in order to determine the next
instruction to be executed and another, modify, which modifies the state according to
the specification and the selected instruction. The execution of an agent can therefore
be viewed as repeated application of the transition rule

< §,8P >—< modify(SP, S, select instruction(SP,S)),SP > . (1)

We assume that both S and SP are made up of a number of sets or stacks (e.g., of
beliefs) and use the notation S[S; \ S2] to indicate the state S in which the set S has
been replaced by S5.

" Indeed, in [3] such a framework was used to provide a common semantic basis for 3APL,
AGENTSPEAK, METATEM, etc.
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Note. This framework should not be interpreted as assuming that a given BDI lan-
guage has explicit constructs for select instruction and modify, but that most BDI
languages can be expressed in terms of the operation of appropriate versions of these
functions.

We also assume that a BDI language contains a set of plans (or rules), P, which are
used by the select instruction operation. These plans may either be a part of S or
SP. We assume such plans are triggered in some fashion by S. In some cases they are
triggered by the composition of the beliefs (e.g., METATEM [9])), in some by the goals
(e.g., 3APL [13M4]) and in some by explicit trigger events (e.g., Jason [2] interpreter
for AGENTSPEAK [19]).

To simplify matters, we use an abstraction of a plan, describing it as

t—{g}b .

Thus, plans comprise; a trigger, t; a guard (checked against the agent’s beliefs), g; and
a body, b, which specifies an instruction (or sequence of instructions) to be executed. In
languages where only beliefs are used to trigger plans this can be written as

T —{g}b .

In order to trigger plans, the language requires some component of the current state S
which activates the trigger. We treat this as a set, 7', and write the triggering process as

T Bt
Finally, we will use the notation Ag |=, p to indicate that a plan, p, is applicable for
an agent, Ag. The semantics of this for a basid] BDI agent is

app cond(t < {g}b, Ag)
Ag ':a t— {g}b

where app cond are the agent language’s applicability conditions. In most languages

@)

app cond(t — {g}b, Ag) = (T = ) A (S = 9)) -
Notes

— Again we do not necessarily expect these operations associated with plans to be
explicit in the languages (e.g., T' may be a stack of goals and T' |=; ¢g may be the
process of matching the head (or prefix) of this stack).

— There may be other applicability checking processes within the language (e.g., ap-
plicability of actions) — we represent all of these within Ag =, .

— Application of a plan results in an instruction to modify the state either directly
(e.g., +b appears in the body of the plan and is an instruction to add b to B) or
indirectly (e.g., the body of the plan is integrated into an intention or other part of
the state which is then used for further planning or to govern subsequent actions
and changes of belief).

2 le.,aBDI agent whose semantics has not been modified with the constructs we describe later.
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Given the above, we below consider the two aspects we wish to introduce. The first,
though influenced by the representation of agent groups in METATEM [9], is indepen-
dent of the underlying language for agents. The only restrictions we put on any under-
lying language is that, as in most BDI-based languages (and as described above), there
are logical mechanisms for explicitly describing beliefs and goals, and possibly plans
and intentions.

2.1 Content and Context Sets

Assuming that the underlying language can describe the behaviour of an agent as above,
we now extend the concept of agent with two sets, Content and Context. Concep-
tually, the agent’s Content describes the set of agents it contains, while the agent’s
Context describes a set of agents it is contained within, although in practice the re-
lationship between an agent and its Content /Context might vary. For example, an
agent’s Content might describe the set of agents it has some influence over and the
agent’s Context the set of agents it is influenced by. Similarly, an agent’s Content
might be viewed as those agents that it has recruited, and its Context those agents
it has been recruited by. Alternatively, an agent might represent a location and its
Content the agents that at that location. The addition of Content and Context to
each agent provides significant flexibility for agent organisation. Agent teams, groups or
organisations, which might alternatively be seen as separate entities, are now just agents
with non-empty Content. This allows these organisations to be hierarchical and dy-
namic, and so, as we will see later, provides possibilities for a multitude of other co-
ordinated behaviours. Similarly, agents can have several agents within their Context.
Not only does this allow agents to be part of several organisational structures simultane-
ously, but it allows the agent to benefit from Context representing diverse attributes
or behaviours. So an agent might be in a context related to its physical locality (e.g.,
agents in the same set are ‘close’ to each other), yet also might be in a context that
provides certain roles or abilities. Intriguingly, agents can be within many, overlapping
and diverse, contexts. This gives the ability to produce complex organisations, in a way
similar to multiple inheritance in traditional object/concept systems. For some sample
configurations, see Fig. [Tl

An important aspect is that this whole structure is very dynamic. Agents can move
in and out of Content and Context, while new agents (and, hence, organisations)
can be spawned easily and discarded. No single agent maintains a representation of the
entire structure, allowing for the possibility of a range of organisations, from the tran-
sient to the permanent. From the above it is clear that there is no enforced distinction
between an agent and an agent organisation. All are agents; all may be treated similarly.

Our proposals prohibit cyclical structures and require that all structural changes oc-
cur with the consent of those agents whose Content or Context sets are affected.
Also, it is essential that the agent’s internal behaviour, be it a program or a specification,
has direct access to both the Content and Context, allowing each agent to become
more than just a ‘dumb’ container.

3 We also require that message-passing between agents is provided; this is standard in most
languages.
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Fig. 1. A selection of potential content/context patterns

Multiple context

Semantics. The simplicity of the above approach allows us to provide a few general
operational rules for managing the content and context sets. We extend the agent’s state,
S, with a content set, (C'n), and a context set, (Cz), and add four new instructions into
the language +ag“" (add ag to the content set), —ag“"* (remove ag from the content
set) and +ag“”, —ag“” for adding and removing agents from the context set. We also
add four new constructs into the trigger component, 7":

entered content(ag) left content(ag)
entered context(ag) left context(ag)

Add two new constructs into our language of guards:

in content(ag)
in context(ag)

We then extend the modify operation with the rules:
modify(SP, S, +ag™) = S[Cn \ CnU {ag}, T\ T Uentered content(ag)] (3)
modify(SP, S, —ag) = S[Cn \ Cn — {ag}, T\ T Uleft content(ag)] (4)

and two analogous ones for the context. These rules extend both the state’s content/
context and the trigger set, 7'. This allows plans to be triggered by changes in these
sets. (e.g., plans of the form

entered content(Ag) «— {in content(Ag)}send(sel f, Ag, plan)

may be written which are triggered by the addition of a new agent Ag to the content set,
into sending that agent a plan).
We also extend the belief inference process to include checking membership of Cn

and Cxz:
ag € Cn

S k= in content(ag) )
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ag € Cx

S = in context(ag) ©

It should be noted that in many languages it may be possible to streamline these exten-
sions (e.g., by merging the triggering of plans and the update of content/context sets —
see Section [3)).

2.2 Constraints

The second basic component we suggest is necessary for many meaningful multi-agent
structures is that of constraints. A constraint consists of additional guards that may be
appended to plans/rules and actions and is typically provided by an agent’s context.
This, for example, allows permissions to be modelled.

Semantics. As with groups we extend the agent’s state, S, with a constraint set, (C').
C'is treated as a set of pairs of a trigger and a guard, written [t = g]. Depending on
the language, it may be desirable to add other pairs to this set, for instance if actions
may have guards and there is an applicability process for actions then action/guard
pairs may also be useful within constraints. Again, we add new instructions into the
language +new constraint® (add new constraint to C') and —new constraint® (re-
move new constraint from C), which are analogous to the previous add/remove op-
erators. We then extend our applicability checking process, Ag =, to

Vt=4¢'1€eC. SEJ app cond(t — {g}b, Ag)

(N
Ag ot —{g}b
So, in many languages, this becomes
Vit=4¢1eC. SEgd Tkt SkEg ®)

AgEat —{g}b

Similar modifications can be made to the operational semantics of action applicability
(internal or external) and any other relevant components of S and SP.

It should be noted that constraints make relatively little sense in a single agent envi-
ronment (where guards on plans and actions are sufficient) it is only in a multi-agent en-
vironment where a member of Context may wish to provide guards to a pre-existing
plan or action that such constraints become useful.

Before going on to providing the semantics of a more comprehensive language (in
Section[3), we first consider the properties of such semantic extensions.

2.3 Properties of Groups and Constraints

In addition to the generic operational semantics for groups and constraints we present
here some properties that ideally any system implementing them should obey. We dis-
cuss when these hold in a system that implements these concepts using our suggested
rules.
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Firstly one agent should believe that another is in its Content /Context if, and
only if, that agent is actually in its Content /Context. We express this as:

CONTAINS (ag) = BEL(in content(ag)) 9
CONTAINED BY (ag) = BEL(in context(ag)) (10)
BEL(in content(ag)) = CONTAINS (ag) (11)
BEL(in context(ag)) = CONTAINED BY (ag) . (12)

For the operational semantics presented above we interpret CONTAINS (ag) as ag €
Cn, CONTAINED BY (ag) as ag € Cx and BEL(¢) as S = ¢.

Let us assume that the the formulae in content(ag) and in context(ag) are “re-
served” in an implementation, i.e., such formulae can not appear in the belief base
either when an agent is initialised or through any belief revision process and that there
is no way they can be inferred through belief inference except by the use of (@) and
(@. (Many BDI languages have mechanisms for reserving key-words which could be
extended for this purpose.) If this is the case then (Q-12)) follow directly from rules (3))
and (@). If it is not possible to restrict the formulae that an agent might believe (e.g.,
it will accept any formula as a belief if sent it by a trusted external agent) then any
system adopting our operational semantics only satisfies (9] and [[0), unless additional
safeguards are implemented.

Turning to constraints, we would expect any well-behaved system implementing
constraints to satisfy

(Ag Fa P) = ((Ag o P) A (C'=10)) (13)

i.e., if a plan is applicable given some constraints, then it is also applicable if there are
no constraints. In our operational semantics this follows from (@) if we observe that
when C' = () the condition V[t = ¢'| € C. S = ¢’ reduces to T and that C' is not
referred to elsewhere in the rule.

Rao and Georgeff [21]] state a number of interesting properties they suggest BDI
languages might wish to satisfy and it would be tempting to examine some of these in
relation to groups (in particular those relating intentions and beliefs (with INTEND (¢)
interpreted as ¢ € 7). However this work assumes that intentions are expressed as
temporal formulae and that belief inference includes temporal and causal reasoning.
Our triggers are not expressed in this way and in fact may include formulae (such as
entered content(ag)) which refer to events that have occurred rather than states of the
world the agent wishes to bring about.

As mentioned previously, it is essential that the agent’s internal behaviour, be it a
program or a specification, has direct access to both the Content and Context,
allowing each agent to become more than just a ‘dumb’ container. It can provide access
to, provide services for, and share information or behaviours with, its Content, as is
demonstrated by Fig. 2} here agent j moves into the separate context of agents 7 and k
(perhaps i represents an auctioneer agent who provides j with the bidding rules, whilst k
is the agent on whose behalf j is bidding). Our proposals encourage the sharing of plans,
beliefs and constraints as structural changes take place but also allow the dissemination
of new knowledge. Indeed we can state the following, very general, result.
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Ag,

send(inform(P))

Fig. 2. Sharing plans and information

Theorem 1. If agent A moves into a new context C' and

— the context agent, C' is willing to send plans/beliefs/constraints/etc to A, and
— agent A incorporates these plans/beliefs/constraints/etc sent from its new context,

then A has the new plans/beliefs/constraints/etc provided by its new context.

Aside. There is an obvious counterpart of Theorem[Ilwhereby A can ask its context for
information (plans/beliefs/etc). Once it moves into a new context then A has access to
the new information/capabilities provided by its context.

Theorem [I] above has many caveats! However, these mainly cover situations where
agents choose not to cooperate. In a cooperative scenario, where an agent provides
plans/beliefs/constraints/etc to any new members of its content, and where agents accept
those items from their new context, then Theorem [ says that an agent effectively has
the information and capabilities provided by its context (in addition to its own).

Importantly, this is seamless. The particular example of constraints is informative.
Constraints effectively prohibit certain planning choices. Thus, through Theorem [l we
know that an agent with certain choices (e.g. of how to achieve a goal) will inherit the
constraints (restrictions) from its context. If the agent is in multiple contexts, the agent
must make choices satisfying all the constraints received from its contexts. Effectively,
the agent is constrained by the union of all its contexts and so its behaviour must follow
the intersection of behaviours allowed by each context.

This aspect is exhibited in the cookery example in Section but is also closely
linked to organisational aspects such as norms in that the agent’s choices are modified
by the contexts (organisations) in which it finds itself.

3 A Simple BDI Language: AGENTSPEAK ™

We will conclude our discussion of formal semantics with a simple example showing
how our framework provides a practical methodology for extending existing BDI lan-
guages. Let us consider an extremely simple agent programming language based on
AGENTSPEAK [1912]]; we will call this language AGENTSPEAK ™.
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Syntax. Our language uses ground first-order formulae for beliefs, actions and goals. A
plan is a triple of a goal, a guard and a stack of instructions (called here deeds following
AIL [3]). An Agent is a triple of a set of beliefs, a stack of deeds and a set of plans.
This is shown in Fig.[3l

belief := Ground first-order formula
action := Ground first-order formula
goal := Ground first-order formula
plan = goal : set(belief) — stack(deed)
agent := < set(belief), stack(deed), set(plan) >
deed := action | +belief | —belief | +!goal

Fig. 3. Syntax of AGENTSPEAK ™

Operational Semantics. An operational semantics for AGENTSPEAK ™ is provided in
the form of the four transition rules in Fig. [l In these semantics do(a) is an operation
in an agent’s interface that causes it to perform the action, a, and then returns a set
of messages in the form of deeds, +!received(sender, ), which instruct the agent
to handle the message ¢ from agent sender. In this language, therefore, perception
has to be handled by an explicit perception action which then returns messages from
the environment as if from another agent. Finally, °;” represents the cons function on
stacks, ‘@’ represents the join function, and ‘random’ indicates random selection of
an element from a set.

do(a) = msg

14
< B,a;D,P >—< B,msgQD, P > (14)

15
< B,+b;D,P >—< BU{b},D,P > (15)

1
<B,-b;D,P >—< B—-{b},D,P > (16)

body = random({b|g: G —be PANG C B}) (17)
< B,+!g; D, P >—< B,bodyQD, P >
Fig. 4. Operational Semantics of AGENTSPEAK ™~

Note. This is not intended as a practical example of a BDI language. For a start the
language is entirely ground and makes no use of unification. Secondly the rather crude
use of the deed stack to organise both planning and message handling/perception is
likely to cause quite strange behaviour in any real agent setting.
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Framework AGENTSPEAK ™
SP P
S < B,D >
T D
SEb - bCB
Tkt - t=hd(D)
app cond(gl : g < b) gCB
modify((B, D), P, +b) (BU{b}, D)
modify((B, D), P, —b) (B —{b},D)
modify((B, D), P,ds) (B,dsQD)
select instruction((B,a; D), P) do(a)
select instruction((B,+b; D), P) +b
select instruction((B,—b; D), P) —b
select instruction((B, +!g; D), P) random({b|p € P AN Ag =a p})

Fig. 5. Mapping our Framework to AGENTSPEAK ™

Extension to the Simple BDI Language. Fig. [5] shows how this language fits into
our earlier framework. Modifying these semantics according to our content/context and
constraints framework now gives us the language semantics shown in Fig.

In fact this extension can be improved upon based on the details of our languages.
For instance we can omit the entered content() and left content() and use +ag"
and —ag®" as plan triggers if we like, changing (3)) to

body = random({b| + ag® : G +—be PANG C BAV[+ag™" = G'] € C.G' C B}

< B,+ag®"; D,Cn,Cz,C, P >—< B,body@D,Cn U {ag},Cx,C, P >
(28)

4 Using the Concepts

We will briefly discuss some illustrative examples of the use of constraints and con-
tent/context sets (sometimes termed groups) in organisational and multi-agent settings.
A group, G, is simply an agent (again called G) whose Contents are the set of agents
within the group.

We begin by considering a few common aspects of agent organisations, and then
examine two case studies in more detail. Note that a more comprehensive review of
how many agent organisational approaches can be modelled using our constructs is
provided in [[12].

4.1 Shared Beliefs

Being a member of all but the least cohesive groups/organisations requires that some
shared beliefs exist between the members. Making the (contentious) assumption that all
agents are honest and that joining a group is both individual rational and group rational,
let agent ¢ hold a belief set BS; and assume the programming language contains the
instruction addBelief ( Beliefs) with the semantics

modify(SP, S, addBelief (Bs)) = S[B \ BU Bs].
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do(a) =msg Vje=GleC.GCB
< B,a;D,Cn,Czx,C, P >—< B,msg@D,Cn,Cz,C, P >

(18)

19
< B,+b;D,Cn,Cx,C,P >—< BU{b},D,Cn,Cz,C,P > (19
(20)
< B,-b;D,Cn,Cx,C,P >—< B —{b},D,Cn,Cx,C,P >
20
< B,+c;D,Cn,Cz,C,P >—< B,D,Cn,Cz,CU{c}, P >
5 (22)
< B,—c%;D,Cn,Cz,C,P >—>< B,D,Cn,Cz,C — {c}, P >
body = random({b|g: G —be PNG C BAV[g=G'|€ C.G' C B}) 23)

< B,+!g;D,Cn,Cx,C, P >—< B,bodyQD,Cn,Cz,C, P >

< B,+ag™; D,Cn,Cz,C, P >—< B, +lentered_content(ag); D,Cn U {ag}, Cx,C, P :
(24)

< B,—ag*"; D,Cn,Cz,C, P >—< B, +lleft_content(ag); D,Cn — {ag},Cz,C, P >
(25)

< B,+ag°®; D,Cn,Cxz,C, P >—< B, +lentered_context(ag); D,Cn,Cxz U {ag},C, P :
(26)

< B,—ag*; D,Cn,Cx,C, P >—< B, +left_context(ag); D,Cn,Cz — {ag},C, P >
27

Fig. 6. AGENTSPEAK ™ extended to multi-agents

Suppose a (group) agent ¢ has the plan:

entered content(Ag) — {in content(Ag)}send(i, Ag, inform(BS;))
and agent j has the plan:

received(Ag, j, inform(BS;)) «— {in context(Ag)}addBelief(BS;)

taken together these plans mean that if j joins the Content of 7 it gets sent the beliefs
BS; which it adds to its own belief base. This allows shared beliefs to be established.

The agent in receipt of the new beliefs may or may not disseminate them to the agents
inits Content, depending on the nature and purpose of the group structure. Once held,
beliefs are retained until contradicted or revised (for example, on leaving the group). It
is worth noting here that these behaviours are merely suggestions of how our proposals
can be used to implement shared beliefs, providing the developer has authorship of all
agents.
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4.2 Permissions and Obligations

A number of multi-agent proposals include concepts of permissions and obligations [1I].
An agent within a group setting may or may not have the permission to perform a
particular action or communicate in a particular fashion. This can be easily represented
using constraints: for instance if agents in group, G, may not perform action a then the
constraint [@ = L] can be communicated to them when they join G’s Content.

It should be noted that in order for such a message to be converted into an actual
constraint, the receiving agent would also need the plan:

received(Ag, i, constrain([a = g|)) < {in context(Ag)} + [a = g|° .

This design deliberately allows varying degrees of autonomy among agents to be han-
dled by the programmer.

Obligations are where a group member is obliged to behave in a particular fash-
ion. This can be modelled if plans are treated as modifiable by the underlying agent
language. Obligations can then be communicated as new plans.

[rmm e initial beliefs ---------------- */
cooperative.
[HEmmm e m e rules -—---------------------——— */

check_constraint (Plan, Arg)
:— not constraint_fails(Plan,Arg).

/* How an agent responds to a group membership invitations =x/

+!join (Group) [source (Group)] : cooperative
<- .my_name (Me) ;
+context (Group) ;
.println ("I believe I have the context of ", Group);

.send (Group, achieve, accept(Me, Group)).

Fig.7. A simple cooperative agent defined in AgentSpeak

4.3 Case Study 1: Cookery Agents

We now describe a case study which we have implemented in AGENTSPEAK using
Jason. It concerns a simple cook agent who is provided with a number of plans by a
chef agent, each for cooking a different meal. The cook’s choice of plan is constrained
by the Context in which it cooks.

Scenario. The chef of a restaurant hires a cook and provides a list of dishes from
which the cook is free to choose when asked to prepare a meal. As diners arrive, their
preferences are noted and the cook endeavours to choose a meal that satisfies all of the
diners. Our cook was implemented as a simple, cooperative agent with the ability to
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enter the Context of other agents but without any domain abilities —it can’t cook —
see Fig.[1

When hired, the cook agent receives plans for making risotto, steak and pizza.
AGENTSPEAK code defining this behaviour is shown below.

+content (Agent) [source(self) ]
<- .print("Sending ", Agent, " plans...");

.send (Agent, tellHow, "+!cook(risotto)
check_constraint (cook, risotto)
<- make(risotto).");

.send (Agent, tellHow, "+!cook(steak)
check_constraint (cook, steak)
<- make(steak).");

.send (Agent, tellHow, "+!cook(pizza)
check_constraint (cook,pizza)
<- make(pizza).").

(Note that this sending of plans is triggered by the cook entering its Content.) When
asked to prepare a meal without the constraints of any diners it prepares risotto; see
Fig. B(b). A meat eating diner then imposes their dislike for risotto by providing the
cook with the constraint

constraint_fails (cook,risotto).

Now acting in the context of this meat eater, rather than making risotto, the chef prepares
steak; see Fig. [B(c). Finally, a vegetarian diner invites the chef to join its Content
and imposes the constraint constraint fails (cook, steak),see Fig.[8(d). The
agent, now a member of three contexts, must decide an appropriate course of action
within the supplied constraints — it must not commit to cooking risotto or steak! Thus
it is constrained to choose to prepare pizza; see below.

+content (Agent) [source(self) ]
<- .print("Sending ", Agent, " my constraints");
.send (Agent, tell, constraint_fails(cook, steak)).

Full execution output for this example is given below.

[chef] saying: inviting cook to join my content

[cook] saying: I believe I have the context of chef
[chef] saying: Sending cook plans...

[chef] saying: I consider cook to be in my content

[cook] doing: make(risotto)

*xxcook 1s making risottoxxx*

[meatEater] saying: inviting cook to join my content
[cook] saying: I believe I have the context of meatEater
[meatEater] saying: Sending cook my constraints
[meatEater] saying: I consider cook to be a member of my content
[cook] doing: make (steak)

x*xxcook 1s making steakxxx*

[vegetarian] saying: inviting cook to join my group
[cook] saying: I believe I have the context of vegetarian
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chef

cook(Meal) <— cook(risotto)

constraint_fails
(cook,steak)

constraint_fails
(cook,risotto)

meatEater vegetarian

meatEater

cook(Meal) «<— cook(steak) cook(Meal) <— cook(pizza)

Fig. 8. A cook with multiple constraints

[vegetarian] saying: Sending cook my constraints
[vegetarian] saying: I consider cook to be in my content
[cook] doing: make(pizza)

x*xxcook 1s making pizzax*x*

4.4 Case Study 2: Self Deploying Agents

This example demonstrates the potential for software services that migrate across geo-
graphical spaces and deploy themselves in their new location.

Scenario. Co-ordination of disaster and rescue missions is a challenging problem for
the authorities involved [135]]. The deployment location, the number and nature of agen-
cies (commissioned or voluntary) involved cannot be foreseen and speed of deployment
is critical. Establishing fast and reliable communication channels between all parties,
no matter what their individual resources are, is essential for effective co-ordination.
In our example, disaster recovery head quarters has a co-ordination agent, hq, that is
mobilised to a wired network in the proximity of the disaster. hq has domain knowledge
but no local knowledge or resources — it does not know which agencies are on the scene
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and cannot communicate outside of its host network. In order to effectively co-ordinate
the rescue effort hg must seek help from a variety of helper agents that can carry commu-
nication to the operational agencies and provide information about local resources. Ex-
amples of help provided by such agents might be: WiFi communication; environmental
sensors; public display points; media communications; and utility providers. The suit-
ability of these agents might be determined by proximity, ability or cost.

On arrival hq broadcasts a ‘services needed’ message requesting that agents with
certain capabilities offer their services. The following code snippet illustrates an agent’s
generic recruitment plan, used to broadcast requests for services to the entire agent
space, along with the plan to recruit a WiFi service.

/* Broadcast for local servicesx/
+!recruit (Service)
<- .broadcast (askIf, has_ability (Agent, Service)).

lrecruit (wifi) .

Co-operative agents respond to hq’s plea for help by sending a reply stating their abili-
ties and confirming their willingness to join the group rescue effort. Below, we show an
agent’s plan for responding to requests for help.

/* Confirm ability and willingness to join =/
+!help (Group, Service)
.my_name (Me) and has_ability(Me, Service)
<- .send(Group, tell, has_ability(Me, Service));
.send (Group, achieve, accept(Me, Group)).

lhelp (hg, wifi).

The plan has a guard that ensures only genuinely able agents respond, it confirms its
ability and requests group membership. Note that in this case, the helper agent does not
consider itself to be a member of the group until the group itself directly informs it of its
membership— a hierarchical structure whereby membership is controlled by the group
is appropriate in this scenario but our proposals also allow agents to control their own
Context, as shown in Fig. [l

On acknowledgement of group membership /¢ holds the belief content(wifi), wifi
holds the belief contezt(hq) and wifi is provided with authentication procedures to
apply to incoming connections; see below.

+laccept (Agent, Group) [source (Agent) ]
is_useful (Agent,_) [source(self)]
<- +content (Agent) ;
.send (Agent, tell, context (Group)).

+content (Agent) [source(self) ]
<- 1is_useful (Agent, communicator) ;
.send (Agent, tellHow, authentication).

Broadcasts of this nature are unavoidable when an agent has no knowledge of the system
ahead of deployment. However the context/content mechanism provides a convenient
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and intuitive alternative that enables more efficient multi-cast communication; for ex-
ample, our agent hg may have recruited a number of communicator agents to whom it
wants to broadcast information, by creating a new agent to act as a container for the
communicator agents, hq is able to send a message to all communicators—using the
container agent as a proxy — with the send(group, broadcast(message)) message,
where the agent group receiving the broadcast(message) message distributes it to all
members of its Content. Once structures are formed, multi-cast communication of
the following type become the norm:

send (communicators, broadcast (found(Survivor, Location))).
send (locators, broadcast(is_clear (Zone))).

Fig. 9l shows some of the structural changes that take place during deployment of our
simple disaster management system.

Migration Services Communicators

acquired

Fig. 10. The dynamic nature of search and rescue
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One of the difficulties of disaster management where life saving rescue is required, is
the prioritisation of rescue attempts and subsequent allocation of resources, particularly
when the number, location and needs of victims changes throughout the rescue mission.
Continuous re-assessment of the mission’s priorities must take place yet pragmatic de-
cisions must be made to ensure rescue teams are effectively deployed and do not, for
example, waste time travelling between rescue sites. The context of a rescue team’s cur-
rent activity, their specialisms and location must be considered before allocating them to
a rescue site. Our grouping constructs provide the flexibility to model the dynamic na-
ture of these contexts and provides a useful bound for reasoning — reducing the search
space for suitable rescue teams. Fig. [L0] illustrates how our proposal intuitively deals
with this situation. The diagram shows rescue agent Ag; standing by in zonel ready to
be deployed and its subsequent change of context if it were to respond to a call. Another
agent Ago that has both air and fire specialisms is currently attending a rescue site. Us-
ing this formalism it is easy to express autonomous behaviour on behalf of the rescue
agents;
constraint_fails(respond, _) :-

in_context (responding), in_context (on_site).

Giving the agents the above rule prevents them from responding to rescue requests whilst
either on route to, or at the scene of a rescue, when combined with the plan below.

+!respond (Rescue) : check constraint (respond, Rescue)
<- lattend(Rescue) .

5 Concluding Remarks

In this paper we have proposed a simple extension to BDI languages that permits the
development of complex multi-agent organisations. We have shown how the addition
of both content and context sets, and constraints is semantically simple and appealing.
The key aspect, particularly with contexts and constraints is that an agents behaviour
may be modified, seamlessly, when the agent moves between contexts.

Although we provided a semantic definition for a simple BDI language, we gave
this only for illustrative purposes. We expect that developers’ favourite logical agent
language could be extended in this way. Importantly, the semantic rules show how this
logical extension can be added (relatively easily) to any appropriate BDI language.

Finally, we provided some simple examples here, and yet more examples in a com-
panion paper [[12]], to illustrate and justify our statement that many agent organisational
aspects can be modelling using our two simple concepts. These examples demonstrate
how leading organisational and team-working concepts such as roles, joint-intentions
and groups fit within our framework, a framework that, if incorporated into BDI lan-
guages will enable a consistent agent-organisation semantics across languages.
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Abstract. The work presented in this paper stands at the intersection
of three diverse research areas: agent-oriented early requirements engi-
neering, business process requirements elicitation and specification, and
computational logic-based specification and verification. The analysis of
business requirements and the specification of business processes are fun-
damental steps in the development of information systems. The first
part of this paper presents B-Tropos as a way to combine business goals
and requirements with the business process model. B-Tropos enhances
a well-known agent-oriented early requirements engineering framework
with declarative business process-oriented constructs, inspired by the
DecSerFlow and ConDec languages. In the second part of the paper, we
show a mapping of B-Tropos onto SCIFF, a computational logic-based
framework for properties and conformance verification.

1 Introduction

This work proposes an integration of different techniques for information systems
engineering, with the aim to reconcile requirements elicitation with declarative
specification, prototyping, and analysis inside a single unified framework.

In tackling the requirements elicitation part, we take an agent-oriented per-
spective. Modeling and analyzing requirements of I'T systems in terms of agents
and their goals is an increasingly popular approach [20] which helps understand-
ing the organizational setting where a system operates, as well as modeling the
stakeholders’ strategic interests, and finally documenting the rationale behind
the design choices made. After system requirements elicitation is complete, one
must define a corresponding business process. A very important issue that must
be addressed at this stage is how to link the “strategic” business goals and
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requirements with the business process model [23]. Many problems arise from
organizational theory and strategic management perspectives due to limits on
particular resources (e.g., cost, time, etc.). Business strategies have a fundamen-
tal impact on the structure of enterprises leading to efficiency in coordination
and cooperation within economic activities.

For our purpose, we have chosen Tropos [§], an agent-oriented software engi-
neering methodology which uses the concepts of agent and goal from the early
phases of the system development. Tropos has a number of interesting features,
such as its goal- and agent-orientation, intuitive and expressive modeling nota-
tion, etc., which have made it to become popular. However, a drawback of Tropos
and a number of similar methodologies is that they do not clearly define how
to move from a requirements model to a business process model. For example,
Tropos does not allow the modeling of temporal and data constraints between
tasks assigned to agents: this means that when developing a business process,
the corresponding Tropos model does not have enough information to define
a temporal ordering between activities. Likewise, start and completion times,
triggering events, deadlines, and many other aspects not necessarily related to
the temporal dimension are essential elements in the description of a business
process model, but they are not represented in Tropos models.

How to enhance Tropos with information that can be automatically used in
the generation of a business process model is one of the aspects we address in this
work. In particular, we have extended Tropos with declarative business process-
oriented constructs, inspired by two recent graphical languages: DecSerFlow [34]
and ConDec [33]. We enhance the characteristic goal-oriented approach of Tropos
agents by introducing a high-level reactive, process-oriented dimension. We refer
to the extended framework as to B-Tropos. Furthermore, we show how both these
complementary aspects could be mapped onto the SCIFF language [4], which
sits at the basis of a computational logic-based framework for the specification
and verification of interaction protocols in open multi-agent systems. In the
presentation of this work, we discuss the issue of time (ordering, deadlines, etc.)
because it is an essential part of business process modeling, and because it is
easy to explain by intuitive examples. However, B-Tropos is not only a temporal
extension of Tropos, but it covers also the treatment of conditions on process
input/output data and other constraints.

The marriage of B-Tropos with SCIFF sets a link between specification, pro-
totyping and analysis: in fact, SCIFF specifications can be used to implement
and animate logic-based agents [I], as well as to perform different verification
tasks, such as properties verification [2] and conformance verification of a given
execution trace []. Prototyping (animation) and analysis (properties and con-
formance verification) add value to B-Tropos and can make it appealing to a
large set of potential users. Early requirements engineers and process engineers
will be able to test their models directly and get an immediate picture of the
system being developed. Engineers testing the properties of the models will not
have to resort to ad-hoc, error-prone translations of high-level models into the
languages used to feed specifications into model checkers, since B-Tropos can
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directly generate SCIFF programs. Managers who need to monitor the correct
behavior of a running system will have a SCIFF specification of the system gen-
erated out of a B-Tropos model automatically, and based on this specification
they will be able to automatically check the compliance of the system using the
SOCS-SI runtime and offline checking facilities [3].

In this work, we focus on specific aspects of this global vision. We define B-
Tropos and the mapping of B-Tropos constructs onto the SCIFF framework. To
make the discussion more concrete, the proposed approach is applied to modeling
and analyzing an intra-enterprise organizational model, focusing on the coordi-
nation of economic activities among different units of an enterprise collaborating
to produce a specific product. The organizational model is an excerpt of a large
case study under consideration within the national FIRB TOCAILIT project

The structure of the paper is as follows. Section 2] briefly presents the Tropos
methodology. Section B describes B-Tropos. The SCIFF framework is presented
in Section @l whereas Section [ defines the mapping of B-Tropos concepts to
SCIFF specifications. The paper ends with the overview of related work in Sec-
tion [ and conclusive remarks in Section [

2 The Tropos Methodology

Tropos [§] is an agent-oriented software engineering methodology tailored to de-
scribe and analyze socio-technical systems along the whole development process
from requirements analysis up to implementation. One of its main advantages is
the importance given to early requirements analysis. This allows one to capture
why a piece of software is developed, behind what or how.

The methodology is founded on models that use the concepts of actors (i.e.,
agent and roles), goals, tasks, resources, and social dependencies between two
actors. An actor is an active entity that has strategic goals and performs actions
to achieve them. A goal represents a strategic interest of an actor. A task rep-
resents a particular course of actions that produce a desired effect. A resource
represents a physical or an informational entity without intentionality. A depen-
dency between two actors indicates that one actor depends on another in order to
achieve some goal, execute some task, or deliver some resource. The former actor
is called the depender, while the latter is called the dependee. The object around
which the dependency centers, which can be a goal, a task, or a resource, is called
the dependum. In the graphical representation, actors are represented as circles;
goals, tasks and resources are respectively represented as ovals, hexagons and
rectangles; and dependencies have the form depender — dependum — dependee.

From a methodological perspective, Tropos is based on the idea of building a
model of a system that is incrementally refined and extended. Specifically, goal

! The TOCALIT project (RBNEO5BFRK, http://www.dis.uniromal.it/~tocai/)
is a three-year, 4.5 MI euro project on “Knowledge-oriented technologies for enter-
prise aggregation in Internet.” It involves a consortium of 11 Italian universities, the
National Research Council, and three industrial partners in the ICT, engineering,
and manufacturing sectors.
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Fig. 1. Product development process

analysis consists of refining goals and eliciting new social relationships among
actors. Goal analysis is conducted from the perspective of single actors using
means-end analysis and AND/OR decomposition. Means-end analysis aims at
identifying tasks to be executed in order to achieve a goal. Means-end relations
are graphically represented as arrows without any label on them. AND/OR de-
composition combines AND and OR refinements of a root goal or a root task
into subparts. In essence, AND-decomposition is used to define the high-level
process for achieving a goal or a task, whereas OR-decomposition defines al-
ternatives for achieving a goal or executing a task. Fig. [[l presents the Tropos
diagram representing an excerpt of the product development process studied in
the course of the TOCAI project.

Ezample 1. Different divisions of a company have to cooperate in order to pro-
duce a specific product. The Customer Care division is responsible for deploy-
ing products to customers, which it refines into subgoals manufacture product,
for which Customer Care depends on the Manufacturing division, and present
product, for which it depends on the Sales division. In turn, Manufacturing
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decomposes the appointed goal into subgoals define solution for product, for which
it depends on the Research & Development (R&D) division, and make product
that it achieves through task execute production line. To achieve goal define so-
lution for product, R&D has to achieve goals provide solution, which it achieves
by executing task design solution, evaluate solution, and deploy solution, which it
achieves through task define production plan. The evaluation of the solution is
performed in terms of costs and available resources. In order to evaluate costs,
R&D executes task assess costs, which consists of calculate bill of quantities and
evaluate bill of quantities. Moreover, this division depends on the Warehouse for
the goal evaluate available resources. The Warehouse either queries the databases
to find available resources or asks the Purchases division to buy resources from
external Supplier. The Purchases division searches in company’s databases for
possible Suppliers and selects the one who provides the best offer.

3 Towards Declarative Process-Oriented Annotations

How business processes can be obtained from requirements analysis is an ur-
gent issue for the development of a system. Unfortunately, Tropos is not able
to cope with this issue mainly due to the lack of temporal constructs. In this
section we discuss how Tropos can be extended in order to deal with high-level
process-oriented aspects. The proposed extensions intend to support designers
in defining durations, absolute time and domain-based constraints for goals and
tasks, as well as declaratively specifying relations between them. These exten-
sions are based on the DecSerFlow [34] and ConDec [33] graphical languages for
the declarative representation of service flows and flexible business processes.
The enhanced Tropos is called B-Tropos.

3.1 Some Definitions

For the sake of clarity, we now give some informal definitions, which will be used
to describe the Tropos extensions introduced in this section.

Definition 1 (Time interval). A time interval is a definite length of time
marked off by two (non negative) instants (Tpin and Thaz), which can be con-
sidered both in an exclusive or inclusive manner. As usually, we use parentheses
((...) ) to indicate exclusion and square brackets ([...] ) to indicate inclusion.

Definition 2 (Relative time interval). A time interval is relative if initial
instant and final instant are defined in function of another instant. Given a time
interval TI marked off by Toin and Tiq. and a time instant T, two relative time
intervals could be defined w.r.t. T

— TI*T to denote the time interval marked off by T + Tinin and T + Tias;
— TI7T to denote the time interval marked off by T — Tynae and T — Tpin.

For example, [10,15)"7" = [T} + 10, Ty + 15) and (0,7]" 72 = (Ty — 7, T3]
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Definition 3 (Absolute time constraint). An absolute time constraint is a
constraint of the formT' OP Date, where T is a time variable, Date is a date and
OP < {at,after,after or at,before,before or at} (with their intuitive mean-

ing).

Definition 4 (Domain-based constraint). A domain-based constraint for-
malizes specific application domain requirements and is specified using CLP con-
straints [Z1] (e.g., >, <, =, etc.) or Prolog predicates.

Definition 5 (Condition). 4 condition is a conjunction of domain-based and
absolute time constraints.

For example, condition T" be fore or at 11.26.2007 AworkingDay(T) states that
T has 26 November 2007 as deadline and that it must be a working day.

3.2 Tasks/Goals Extension

In order to support the modeling and analysis of process-oriented aspects of
systems, we have annotated goals and tasks with temporal information such as
start and completion times (the notation is shown in Fig. 2l). Each task/goal can
also be described in terms of its allowed duration ([Dmin, Dmaz] in Fig. [2). This
allows one to constrain, for instance, the completion time to the start time, i.e.,
completion time € [Dmin, Dmax]Tstert time  Additionally, absolute temporal
constraints can be used to define start and completion times of goals and tasks.

[Dmin, Dmax]

start A completion
I={...}
OP Date \| |O=(...} ['})XOP Date

absolute tin‘/ fulf

constraint input/output
fulfillment condition

Fig. 2. Extended notation for tasks and goals

A goal/task can also be described in terms of the resources needed and pro-
duced by the goal/task itself. We represent the resources needed by a goal /task
through attribute input and the resources produced by a goal/task through at-
tribute output. Finally, tasks can be annotated with a fulfillment condition, which
defines when they are successfully executed.

3.3 Process-Oriented Constraints

To refine a requirements model into a high-level and declarative process-oriented
view, we have introduced different connections between goals and tasks, namely
relation, weak relation, and negation (see Table [[). These connections allow



B-Tropos 163

Table 1. Tropos extensions to capture process-oriented constraints (grouped negation
connections share the same intended meaning, as described in [34])

relation weak relation negation
responded H E >'_ _____ E >' H >
presence {c} {ry {c} {V}D {c} {ry

co-existence D {'cr1} {crz}E Dz(_:r:}_ _{(_:r_z}{> Z {cr} {crz}

Tb Tb Tb
response D% %5 e munc®
precedence D«—sz> Yo - ‘T‘bD D“_H%

@ 0 @ W LT
i Do agd  De-ladd I
sriccession {cri} {cr2} {c_r1_}_ Ecrz} {cr} “{cr2}

designers to specify partial orderings between tasks under both temporal and
domain-based constraints. To make the framework more flexible, connections
are not directly linked to tasks but to their start and completion times. This
solution, for instance, enables the representation of interleaving concurrency. A
small circle is used to denote the connection source, which determines when the
triggering condition is satisfied (co-existence and succession connections asso-
ciate the circle to both end-points, since they are bi-directional).

Relation and negation connections are based on DecSerFlow [34] and ConDec
[33] template formulas, extended with constraints on execution times (e.g., dead-
lines) as well as domain-based and absolute time constraints. Conditions can be
specified on both start and completion times and are delimited by curly braces
({c}, {r} and {cr;} in Table [l); the source condition is a triggering condition,
whereas the target imposes restrictions on time and/or data.

The intended meaning of a responded presence relation is: if the source hap-
pens such that c is satisfied, then the target should happen and satisfy r. The
co-existence relation applies the responded presence relation in both directions,
by imposing that the two involved tasks, when satisfying cr; and cry, should
co-exist (namely either none or both are executed).

Other relation connections extend the responded presence relation by spec-
ifying a temporal ordering between source and target events; optionally, a rel-
ative time interval (denoted with T, in Table [I) could be attached to these
connections, bounding when the target is expected to happen with respect to
the time at which the source happenedE In particular, the response relation
constrains the target to happen after the source. If T} is specified, the minimum
and maximum times are respectively treated as a delay and a deadline, that
is, the target should occur between the minimum and the maximum time after
the source (target time € T, lf source ”me). The precedence relation is opposite to
response relation, in the sense that it constrains the target to happen before the

2 If Ty, is not specified, the default interval is (0, c0).
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Ry A =
b e =

(a) A during B (b) A meets B

Fig. 3. Representation of two simple Allen’s intervals in B-Tropos

(a) Response relation (b) Weak response relation

Fig. 4. Integrating process-oriented and goal-directed dimensions in B-Tropos

source. A succession relation is used to mutually specify that two tasks are the
response and precedence of each other. By mixing different relation connections,
we can express complex temporal dependencies and orderings, such as Allen’s
intervals [5] (Fig.[J). For example, Allen’s duration relation is formalized by im-
posing that A’s start should happen after B’s start and A’s completion should
happen before B’s completion (Fig. , whereas meets relation is formalized
by imposing that A’s completion should be equal to B’s start (Fig. .

As in DecSerFlow and ConDec, we assume an open approach. Therefore, we
have to explicitly specify not only what is expected, but also what is forbid-
den. These “negative” dependencies are represented by negation connections,
the counter-part of relation connections. For example, negation co-existence be-
tween two tasks states that when one task is executed, the other task shall never
be executed, neither before nor after the source.

Summarizing, through relation and negation connections designers can add a
horizontal declarative and high level process-oriented dimension to the vertical
goal-directed decomposition of goals and tasks. It is worth noting that, in pres-
ence of OR decompositions, adding connections may affect the semantics of the
requirements model. The decomposition of task A in Fig. shows that its
subtask C' can be satisfied by satisfying D or E. On the contrary, the response
relation between B’s completion and D’s start makes D mandatory (B has to
be performed because of the AND-decomposition, hence D is expected to be
performed after B). This kind of interaction is not always desirable. Therefore,
we have introduced weak relation connections with the intent of relaxing rela-
tion connections. Their intended meaning is: whenever both the source and the
target happen and the trigger condition is satisfied, the target must satisfy the
restriction condition. The main difference between relations and weak relations
is that in weak relations the execution is constrained a posteriori, after both

source and target have happened. Differently from Fig. in Fig. the
response constraint between B and D should be satisfied only if D is executed.
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Fig. 5. Process-oriented extensions applied on a fragment of Fig. [l

Finally, B-Tropos permits to constrain non-leaf tasks, leading to the possi-
bility of expressing some process-oriented patterns [35]. For instance, a relation
connection whose source is the completion of a task, which is AND-decomposed
into two subtasks, triggers when both subtasks have been executed. Therefore,
the connection resembles the concept of a synchronizing merge on the leaf tasks.

To show how process-oriented constraints could be added to a Tropos model,
we extend a fragment of the diagram represented in Fig. [I} the result is shown
in Fig. @l The first extension concerns the decomposition of task assess costs:
the bill of quantities can be evaluated only after having been calculated. Such a
constraint could be modeled in B-Tropos by (1) indicating that the calculation
produces a bill of quantities, whereas the evaluation takes a bill as an input, and
(2) attaching a response relation connection between the completion of task cal-
culate bill of quantities and the start of task evaluate bill of quantities. The second
extension has the purpose of better detailing task find resources in Warehouse,
namely representing that (1) task duration is at least 10 time units, (2) the task
produces as an output a datum (called Found), which describes whether or not
resources have been found in the Warehouse, and (3) the task is considered ful-
filled only if resources have been actually found, that is, Found is equal to yes.
Finally, one can notice the absence of constraints between goals evaluate costs
and evaluate resources. Such an absence enables the two sets of activities aimed
at achieving those goals to be executed concurrently.

4 SCIFF

SCIFF [] is a formal framework based on abductive logic programming [22],
developed in the context of the SOCS projedﬁ for specifying and verifying inter-
action protocols in an open multi-agent setting. SCIFF introduces the concept
of event as an atomic observable and relevant occurrence triggered at execution

3 SOcieties of heterogeneous ComputeeS,EU-IST-2001-32530 (home pagehttp://1ia.
deis.unibo.it/research/S0CS/)).
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time. The designer has the possibility to decide what has to be considered as an
event; this generality allows him to decide how to model the target domain at
the desired abstraction level, and to exploit SCIFF for representing any evolving
process where activities are performed and information is exchanged.

We distinguish between the description of an event, and the fact that an event
has happened. Happened events are represented as atoms H(Ev,T'), where Ev
is a term and T is an integer, representing the discrete time point at which the
event happened. The set of all the events happened during a protocol execution
constitutes its log (or execution trace). Furthermore, the SCIFF language sup-
ports the concept of expectation as first-class object, pushing the user to think of
an evolving process in terms of reactive rules of the form “if A happened, then B
is expected to happen”. Expectations about events come in form E(Ev, T') where
Ev and T are variables, eventually grounded to a particular term/value.

The binding between happened events and expectations is given by means
of Social Integrity Constraints (ZCs). Such constraints are forward rules of the
form Body — Head, where Body can contain literals and (conjunctions of hap-
pened and expected) events and Head can contain (disjunctions of) conjunctions
of expectations. CLP constraints and Prolog predicates can be used to impose
relations or restrictions on any of the variables, for instance, on time (e.g., by
expressing orderings or deadlines). Intuitively, ZC allows the designer to define
how an interaction should evolve, given some previous situation represented in
terms of happened events; the static knowledge of the target domain is instead
formalized inside the SCIFF Knowledge Base. Here we find pieces of knowledge
on the interaction model as well as the global organizational goal and/or objec-
tives of single participants. Indeed, SCIFF considers interaction as goal-directed,
i.e., it envisages environments in which each actor as well as the overall organiza-
tion could have some objective only achievable through interaction; by adopting
such a vision, the same interaction protocol could be seamlessly exploited for
achieving different strategic goals. This knowledge is expressed in the form of
clauses (i.e., a logic program); a clause body may contain expectations about
the behavior of participants, defined literals, and constraints, while their heads
are atoms. As advocated in [I7], this vision reconciles in a unique framework
forward reactive reasoning with backward, goal-oriented deliberative reasoning.

In SCIFF an interaction model is interpreted in terms of an Abductive Logic
Program (ALP) [22]. In general, an ALP is a triple (P, A, IC), where P is a
logic program, A is a set of predicates named abducibles, and IC' is a set of
Integrity Constraints. Roughly speaking, the role of P is to define predicates,
the role of A is to fill in the parts of P that are unknown, and the role of IC'
is to control the way elements of A are hypothesized, or “abducted”. Reason-
ing in abductive logic programming is usually goal-directed, and accounts for
finding a set of abducted hypotheses A built from predicates in A such that
P U A E G (being G a goal) and P U A = IC. The idea under-
lying SCIFF is to adopt abduction to dynamically generate the expectations
and to perform the conformance checking between expectations and happened
events (to ensure that they are following the interaction model). Expectations are
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defined as abducibles: the framework makes hypotheses about how participants
should behave. Conformance is verified by trying to confirm the hypothesized
expectations: a concrete running interaction is evaluated as conformant if it ful-
fills the specification. Operationally, expectations are generated and verified by
the SCIFF proof procedureﬂ a transition system which has been proved sound
and complete with respect to the declarative semantics [4]. The proof procedure
is embedded within SOCS-SI [3], a JAVA-based tool capable of accepting differ-
ent event sources (or previously collected execution traces) and checking if the
actual behavior is conformant with respect to a given SCIFF specification.

5 Mapping B-Tropos Concepts to the SCIFF Framework

In this section we present the mapping of B-Tropos concepts into SCIFF speci-
fications, briefly describing how the obtained formalization is used to implement
the skeleton of logic-based agents. The idea behind the mapping is to define a
formal statement in SCIFF for each B-Tropos graphical element. This allows for
the automatic generation of SCIFF specifications from B-Tropos models.

Table Pl summarizes the formalization of the goal-oriented part of B-Tropos in
SCIFF. This part represents the static knowledge of the application domain, so it
is modeled inside the SCIFF knowledge base. Two fundamental concepts are goal
achievement and task execution. These concepts are modeled in SCIFF using the
6-ary predicates achieve and execute. Intuitively, achieve(z, g,t;, tf,4,0) is true
if actor x achieves goal g where ¢; is the start time and ¢y is the completion time.
execute(x, a,t;, ty,1,0) holds if actor x executes task a where t; and ¢; are start
and completion time, respectively. Parameters ¢ and o represent the resources
respectively needed and produced by the execution of the task or achievement
of a goal. Start and completion times should satisfy both duration and absolute
time constraints (ac in Table [2]) eventually associated to a goal/task.

The execution of tasks is also determined by the satisfaction of fulfillment con-
ditions and the generation of task start and completion events. These events are
represented using literals of the form event(ev, x, a,r) where ev € {start,end}, a
is the task that has generated the event, x is the actor who has executed the task,
and r is a list of resources. In particular, resources associated with start events
represent the input of the task, whereas resources associated with completion
events refer to the output.

In some cases the designer may prefer to keep the model at an abstract level, so
goals can be neither refined nor associated to tasks. Abduction allows us to face
such a lack of information by reasoning on goal achievement in a hypothetical
way. In particular, we have introduced a new abducible called achieved to
hypothesize that the actor has actually reached the goal.

Tropos relations are then formalized in SCIFF as rules on the basis of the
following concepts:

4 Available at http://1lia.deis.unibo.it/research/sciff/
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Table 2. Mapping of the goal-oriented proactive part of B-Tropos onto SCIFF

o achieve(X,G,T;, Ty, I,0) —

Leaf goal @ achieved(X, G, T;,Ty,1,0),
act acz Tt € [Dmin, Dmaz]JrTi,acl, acs.

execute(X, A, T;,T¢, I,0) «—
b E(event(start, X, A, I),T;),
Leaf task @ E(event(end, X, A,O),Ty),
act acz Ty € [Dmin,Dmaz]JrTi,aCl,aCQ,

ful fillment condition.
achieve(X,G,T;,Tf, I,0) —

AND achieve(X,G1,Tin,Ts1,11,01),. ..,
decomposi- achieve(X, Grn, Tin, Trny In, On),
tion Ty = min{Ti, ..., Tin}, Ty = max{Ts1,..., Trn},
I=LU...UL,0=0,U...U0O,.
execute(X, A, T;, Ty, I,0) —
execute(X, A1, Ti1, Tf1,11,01),. . .,
execute(X, An, Tin, Tfn, In, On),
T = miH{Til, ey Tin}, Tf = max{Tfl, ey Tfn},
I:Ilu...UIn,O:Olu...UOn.
achieve(X,G,T;, T, I, O) «—achieve(X,G1,T;, T, 1, O).
OR decom-
position

achieve(X,G,T;, Ty, I,0) «—achieve(X, Gy, T, Ty, 1,0).
execute(X, A, T;, Ty, I,0) «—execute(X, A1, T;,T¢,1,0).

execute(X, A, T;,T¢, I,0) «—execute(X, An, T3, T¢, I, 0).

Means-end achieve(X,G, T3, Tf, I,0) «— execute(X, A, T;,Tf, I,0).

achieve(X,G,T;, Ty, I,0) —

Goal  de- @
pendency E(delegate(X,Y, G, Ty), Ty),
l Td>Ti,Td<Tf.
execute(X, A, T;,T¢, I,0) «—
% E(delegate(X,Y, A, T¢), Ta),

Tg > TZ‘,Td < Tf.

Task  de-
pendency

— AND/OR-decompositions and means-end are trivially translated to SCIFF.

— In goal (task) dependencies, it is expected that the depender appoints the de-
pendee to achieve a goal (execute a task) before a certain time instant. To this
end, we have introduced event delegate(zx, y, g,t) to indicate that actor x del-
egates the achievement of goal g to actor y and y have to achieve g by time ¢.
A delegation is observable and so it is kept trace of in the execution trace.
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Table 3. Mapping of B-Tropos response connections onto SCIFF

Tb hap(event(Fv, X1, A1, R1),T1) A
Response ) yo——»> » T
{c¢ —exp(event(Ev, Xa, Az, R2), To) Nr ATy € Ty
Weak Re- e TbD hap(event(Ev, X1, A1, 1), T1) A
R v
sponse {c} {r} /\hap(event(Ev, Xz, AQ, 2), Tg) —1r ATy € ,T-*—T1
Negation Tb hap(event(Ev, X1, A1, R1),T1) A
DO—H—>D
Response {c} © {r} Ahap(event(Ev, Xo, Az, Ro), To) Ar ATo € T,7™ — 1.

The reactive part of B-Tropos encompasses both the reaction to a dependency
and process-oriented constraints. As already pointed out, process-oriented con-
straints are inspired by DecSerFlow/ConDec template formulas, for which a pre-
liminary mapping to SCIFF has been already established [I1]. Connections are
translated using ZCs. For the sake of space, we refer to [] for a detailed descrip-
tion on how SCIFF handles constraints. Here we present some examples of how
process-oriented constraints are formalized (Table [)). Such formulas specify the
informal description given in Section [Bl Response connection constraint states
that if the source, event(FEv, X, A1, R1), happens and the trigger condition, ¢, is
satisfied, then the target, event(Ev, Xo, Aa, Rs), is expected to happen and the
restriction condition imposed on the target, r, must be satisfied. In addition, the
target is expected to occur within 7, b+ Tt Weak response constraints are verified
a posteriori. In particular, when the connected events happen and the triggering
condition is satisfied, the restriction imposed by the target must be satisfied.
Similarly to response connections, the constraint is verified if the target event
occurs within T;‘ T, Negative response constraints spot an inconsistency when
the connected events happen and all conditions are satisfied.

We remark that the framework allows one to constrain non-leaf tasks and
goals, but only start and completion events of leaf tasks are considered as ob-
servable events. To address this issue, we have introduced intensional predicates
hap and exp to represent the happening and expectation of (possibly) composite
events. For instance, a leaf task starts (or is completed) only if there is evidence
for it (i.e., the corresponding event happened). Accordingly, for a leaf-task A:

hap(event(Ev, X, A, R),T) «— H(event(Ev, X, A, R),T).
exp(event(Ev, X, A, R),T) «— E(event(Ev, X, A, R),T).

Composite events recursively follow the goal analysis approach:

— the start/completion of an OR-decomposed task happen (resp. is expected
to happen) when one of its (sub)tasks start/completion happens (resp. is
expected to happen);

— the start of an AND-decomposed task happens (resp. is expected to happen)
when its first (sub)task starts (resp. expected to start);

— the completion of an AND-decomposed task happens (resp. is expected to
happen) when its last (sub)task is completed (expected to be completed).
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To model the reaction to a dependency, we assume that when a dependee
Y receives from a depender X a request for achieving a goal G, Y reacts by
undertaking the commitment of achieving G

H(delegate(X,Y,G,Ty), Ta) — achieve(Y,G,T;, Ts,1,0) NT; > Ty.

The provided formalization can be used to directly implement the skeleton
of logic-based agents, as for example the ones described in [I]. Such agents fol-
low the Kowalsky-Sadri cycle for intelligent agents, by realizing the think phase
with the SCIFF proof-procedure and the observe and act phases in JADE. The
proof-procedure embedded in SCIFF-agents is equipped with the possibility to
transform expectations about the agent into happened events, and with a selec-
tion rule for choosing a behavior when several choices are available. In particular,
each actor represented in a B-Tropos model can be mapped into a SCIFF-agent
whose deliberative pro-active part (formalized in the agent’s knowledge base)
is driven by the goal/task decomposition of its root goal, and whose reactive
behavior (formalized as a set of ZCs) is determined by the delegation mechanism
and the process-oriented constraints. The agent that wants to achieve the global
goal (e.g., Customer Care in Fig. [[l) starts by decomposing it, whereas other
agents wait until an incoming request is observed. In this case, the dependency
reactive rule of the agent is triggered, and the agent attempts to achieve the
assigned goal. This goal may be either decomposed or delegated to other agents
until expectations proving its achievement are generated. Such expectations thus
are transformed to happened events, that is, actions performed by the agent.

Figure [0 presents the SCIFF formalization corresponding to the B-Tropos
diagram of Fig. Bl Here Research & Development and Warehouse are respec-
tively represented as r&d and wh, and symbol = is used to denote unification.
In that figure one can see how the formalized SCIFF specification is assigned
to the Warehouse and R&D units. To have an intuition about how the two
agents act and interact, let us consider the case in which the R&D unit intends
to achieve the goal assigned by the Manufacturing division. The unit decom-
poses goal evaluate solution in its subparts until a set of expectations, which lead
to the achievement of the goal, is determined. Below we list a possible set of
expectations:

E(event(start,r&d, cale bill,[]), Tscb), - - -

(event(end, r&d, cale bill, [Bill]), Tecb), Tecy > Tsch,
(event(start,r&d, eval bill, [Bill]), Tsep), Tseb > Teen,
(

(

= =

E(event(end, r&d, eval bill,[]), Teeb); Teeb > Tseb,
E(delegate(r&d,wh, eval resources, Teer), Tser).

This set of expectations can be read as an execution plan, consisting of two con-
current parts: (1) a sequence of events related to start/completion of leaf tasks,
ordered by the response relation which constrains the bill calculation and evalu-
ation; (2) the delegation of resources evaluation, which should be communicated

5 For the sake of brevity we do not present here the reaction rule for task dependency
that has the same intuition as the one for goal dependency.
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KByga : achieve(r&d, eval solution,T;, Ty, I,0) «—achieve(r&d, eval costs, Ti1, Ty, 11,01),
achieve(r&d, eval resources, Tiz, Tfz, Iz, O2),
min(T;, [Ti1, Ti2]), max(Ty, [Tf1, Tf2]),
I=11UI;,0 =01 UOs>.

achieve(r&d, eval costs, T;, Ty, I,0) —execute(r&d, assess costs, T;, Ty, I,0).
execute(r&d, assess costs,T;, Ty, I,0) —ewxecute(r&d, calc bill, Ty, Ty1, 11, 01),
execute(r&d, eval bill, Tz, Tyz, I2,02),
min(7T;, [Ti1, Tiz]), max(Ty, [Tr1, Ty2]),
I=1,UI;,0 =01 UO>.
execute(r&d, cale bill, T;, Ty, [], [C Bill]) «—E(event(start, r&d, calc bill, []), T;),
E(event(end, r&d, calc bill, [CBill]), T¢), Ty > T;.
execute(r&d, eval bill, Ty, Ty, [EBill], []) «—E(event(start, r&d, eval bill, [EBill]), T;),
E(event(end, r&d, eval bill,[]),Ty), Ty > T;.
achieve(r&d, eval resources, T;, Ty, I, O) «E(delegate(r&d, wh, eval resources, Ty), Tq),
achieve(wh, eval resources, Ty, Ty, I,0),
Ty > Ty, Ty < Ty.

K By, ¢ achieve(wh, eval resources, T, Ty, I, O) «—execute(wh, find resources, Ty, Ty, I,0).
execute(wh, find resources, T;, Ty, I,O) «—execute(wh, find in wh,T;, Ty, I,0).
execute(wh, find resources, T;, Ty, I, O) «—execute(wh, buy, T;, Ty, I, O).

execute(wh, find resources, T;, Ty, [], [Found]) «—E(event(start, wh, find in wh,[]), T:),
E(event(end, wh, find in wh,[Found]), Ty),
Ty > T; + 10, Found = yes.
execute(wh, buy, T;, Ty, [], []) —E(event(start, wh, buy, []), Ti),
E(event(end, wh,buy, []), T¢), Ty > T;.

ZCsrga : hap(event(end, r&d, cale bill, [CBill]), T1) —exp(event(start, r&d, eval bill, [EBill]), T2)
ATy > Ty N EBill = CBull.
ICswh : H(delegate(r&d, wh, eval resources,Ty), Ty) —achieve(wh, eval resources,T;, Ty, I,0)
ANT; > Ty.

Fig. 6. Formalization of the B-Tropos model fragment shown in Fig.

to the Warehouse. In particular, when the expectation about the delegation is
transformed to a happened event by the R&D agent, the Warehouse agent is
committed to achieve the delegated goal inside the time interval (Tser, Teer).
It is worth noting that the framework can identify inconsistencies in temporal
and/or data requirements specification by means of unsatisfiable constraints.
This is, for instance, the case in which the R&D unit requires an evaluation of
the availability of resources, e.g., in 5 time units, whereas the Warehouse needs
at least 10 time units to verify the presence of resources. In these situations, the
designer needs either to relax constrains (e.g., extending the time) or to adopt
new solutions for increasing the performance of the system (e.g., providing the
Warehouse with a more efficient search application).

Besides the implementation of logic-based agents, SCIFF can also be used to
perform different kinds of verification, namely performance verification and con-
formance verification. Performance verification aims at proving that stakehold-
ers can achieve their strategic goals in a given time. Such verification can also be
used to evaluate different design alternatives in terms of system performance. For
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example, one could ask SCIFF to verify whether an execution exists such that
the top goal of one of the stakeholders is achieved within a given deadline. SCIFF
will then try to generate such an execution, by means of an intensional (i.e., par-
tially specified) execution trace; generally speaking, this is achieved by transform-
ing expectations into happened events. Conformance verification [4] is related to
the auditing measures that can be adopted for monitoring the activities performed
by actors within the system. The idea underlying conformance verification is to
analyze system logs and compare them with the design of the system, to verify
whether the actual behavior of a system effectively complies with model expecta-
tions. This allows system administrators to understand whether or not stakehold-
ers have achieved their goals and, if it is not the case, to predict future actions.

6 Related Work

While the literature on single aspects of the framework is huge (many ref-
erences can be found to the papers describing Tropos, SCIFF, and DecSer-
Flow/CondDec), not much work has been done at the intersection of the corre-
sponding domains. Several formal frameworks have been developed to support
the Tropos methodology. For instance, Giorgini et al. [I9] proposed a formal
framework based on logic programming for the analysis of security requirements.
However, the framework does not take into account temporal aspects of the sys-
tem. In [9] a planning approach has been proposed to analyze and evaluate design
alternatives. Though this framework explores the space of alternatives and deter-
mines a (sub-)optimal plan, that is, a sequence of actions, to achieve the goals of
stakeholders, it is limited in defining temporal constraints among tasks. Fuxman
et al. [I8] proposed Formal Tropos that extends Tropos with annotations that
characterize the temporal evolution of the system, describing, for instance, how
the network of relationships evolves over time. Formal Tropos provides a tempo-
ral logic-based specification language for representing Tropos concepts together
with temporal constructs, which are verified using a model-checking technique
such as the one implemented in NuSMV. This framework has been used to verify
the consistency of requirements models [I8] as well as business processes against
business requirements and strategic goal model [23]. However, Formal Tropos
does not support abduction, and thus, it is not able to generate expectations
and perform conformance checking between expectations and happened events.
Finally, we mention the work by Cares et al [10], who proposed to implement
software agents in Prolog starting from Tropos models. In particular, they pro-
posed to specify the programming activation time through four implementation
attributes, namely at begin, at end, at call, and always. The difference with our
proposal lies in the generation of implementation besides the employed tempo-
ral constructs. Actually, they do not provide an encoding of Tropos models into
Prolog so that the implementation is manual.

The last years have seen the need for bridging the gap between requirements
engineering and business process design by providing support for developing busi-
ness processes on top of requirements models and verifying whether a business
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process actually meets its business goals. For instance, Lapochnian et al. [25]
proposed a systematic requirements-driven approach for business process design
and configuration management, which adopts goal models to capture alternative
process configurations. Differently from our work, they do not consider the rela-
tionships between agents so that framework is inadequate to describe business
processes spanning across multi-agent systems. Frankova et al. [16] have used the
ST* modeling language [27], an extension of Tropos addressing security and pri-
vacy issues, as a basis for the definition of Secure BPEL, a specification language
that extends WS-BPEL [6] for modeling secure business processes. The objective
of this framework is to assist business process analysts in deriving the skeleton
of secure business processes from early requirements analysis. Finally, Lopez et
al. [26] presented a reasoning method for verifying the consistency between ST*
models and BPMN specifications [7]. In particular, the authors have investigated
the connection between business processes and requirements models, introducing
the notion of goal equivalence based on trace semantics.

Several works also attempt to define a formal semantics underlying graphical
business process models and to design agent systems. In the business process
domain, Wong et al. [37] provided a formal semantics for a subset of BPMN in
terms of the process algebra CSP [30], whereas Dijkman et al. [I5] used Petri
Nets [28]. Their objective is to formally analyze and compare business process
models. We differ from these proposals since the objective of our work is to
provide a requirements-driven framework for business process and agent system
design. The use of computational logic for the flexible specification and rigorous
verification of agent interaction is adopted by many proposals. While other works
(e.g., [36]) use temporal logic to model the temporal dimension of interaction,
SCIFF exploits a constraint solver and adopts an explicit representation of time.

Event Calculus [24] was introduced by Kowalsky and Sergot as a logic pro-
gramming formalism for representing events and their effects. This formalism
explicitly reasons upon properties (fluents) holding during time intervals. Dif-
ferently from Event Calculus, our framework treats time like other variables, in
association with domains, which makes it possible to express constraints (e.g.,
deadlines) and to exploit an underlying constraint solver. Among the works
based on Event Calculus, we cite the work by Shanahan [32], who proposed
the abductive event calculus that includes the concept of expectation, and the
work by Cicekli et al. [I2], who formalized workflows using Event Calculus. In
Shanahan’s work events and expectations are of the same nature and both are
abduced, while our expectations should match the actual events. This is due
to the different underlying assumptions and, consequently, the different focus:
while we assume that the history is known, Shanahan proposes to abduce events.
Similarly to [I5I37], Cicekli et al. focus on the execution of business processes,
whereas the reconciliation between a business process and the business goals
that have motivated the process definition are completely ignored.

Finally we mention that a mapping of DecSerFlow into Linear Temporal Logic
(LTL) [29] has been proposed in [34]. It can be used to verify or enforce conformance
of service flows and also to directly enact their execution. The advantages of using
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SCIFF instead of LTL is that SCIFF can handle time and data in an explicit and
quantitative way, exploiting CLP to define temporal and data-related constraints.

7 Conclusions

In this work we have proposed to integrate a number of techniques for infor-
mation systems engineering, with the aim to reconcile requirements elicitation
with specification, prototyping and analysis, inside a single unified framework.
We have presented B-Tropos, an extension of Tropos with declarative process-
oriented constraints, and its mapping into the SCIFF language. We have mainly
focused on the modeling and mapping of aspects related to declarative busi-
ness processes using connections inspired by DecSerFlow and ConDec languages.
Augmenting a Tropos model with such constraints has the effect that both the
proactive and the reactive, process-oriented agent behavior could be captured
within the same diagram.

The mapping of B-Tropos onto SCIFF makes it possible to directly imple-
ment logic-based agents starting from the enhanced Tropos model, as well as to
perform different kinds of verification, namely to check if the model satisfies a
given property and to monitor if the execution trace of a real system is actually
compliant with the model.

The work presented here is a first step towards the integration of a business
process in the requirements model. We are currently running experiments on pro-
totyping as well as on property and conformance verification. Some results are pre-
sented in [13], where B-Tropos models are also used to generate possible executions
traces, and to animate agents in the context of the CLIMA Contest Food Collection
problem [14], in line with the aforementioned work by Cares and colleagues [10]. We
are also investigating in depth the formal properties of our proposed mapping, and
are trying to understand how to better exploit the underlying SCIFF constraint
solver by introducing more complex scheduling and resource constraints so as to
capture more detailed business requirements and agent interactions. As a future
activity, we plan to investigate the generation of executable business process spec-
ifications (such as WS-BPEL) from B-Tropos models. Another direction under in-
vestigation concerns business process compliance. In particular, we are interested
in the problem of the interplay between business and control objectives during busi-
ness process design [31]. Finally, we intend to conduct empirical studies on large
scale, industrial size case studies for a practical evaluation of the framework.
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Abstract. In this paper, we present a formal and executable approach
to automated multi-issue negotiation between competitive agents. In par-
ticular, this approach is based on reasoning in terms of projections in
convex regions of admissible values and is an extension of previous work
by Marco Cadoli in the area of proposal-based negotiation. Our goal is to
develop a heuristic strategy to flexibly compute the offers and counter-
offers so as to fulfill each agent’s objectives and minimize the number of
agents’ interactions. The proposed algorithm aims at improving a funda-
mental parameter of the negotiation process: the interaction complexity
in the average case.

1 Introduction

Automated negotiation among software agents is becoming increasingly impor-
tant as a consequence of the rapid development of web-based transactions and
e-commerce. Negotiation is an important subject of study in the branch of Dis-
tributed Artificial Intelligence (DAI) and MAS (Multi-Agent Systems), as dis-
cussed for instance in [TI2J3]/4].

A negotiation process can be defined as a particular form of interaction be-
tween two or more agents. As discussed, e.g., in [B] and [6], negotiation is a
particular type of interaction in which a group of agents, with a desire to co-
operate but with conflicting interests, work together in aim to reach a common
goal, or to achieve an agreement that is acceptable by all parties in the process.
More formally, negotiation can be defined as “a distributed research in a space of
potential agreements” ([7]). In this sense, each participant involves its individual
area of interest (also called negotiation space or feasibility region), and intends
to reach agreements in that area. Negotiation spaces can be represented by a
set of constraints. Then, finding an agreement can be modelled as a constraint
satisfaction problem (CSP). In particular, in multi-agent systems the process of
negotiation can be represented as a distributed constraint satisfaction problem
(DCSP), since the constraints are distributed among different agents ([g]).

In proposal-based negotiation, the information exchanged between the par-
ties is in the form of offers (internal points of the negotiation spaces) rather
than constraints, preferences or argumentation. Each agent is able to compute
the points to offer in order to reach an agreement. Negotiation terminates suc-
cessfully whenever the participants on the process, find a point, in the space of
negotiation, that is mutually acceptable. That point has therefore to be included
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in the common area of all negotiation spaces: i.e., in the intersection of the areas
of interests [3].

Agents involved in the process of negotiation need to interact. Usually they
are self-interested, since each one has different constraints to satisfy and different
benefits, in terms of utility functions, to maximize (or minimize). The utility
functions can be represented by new constraints on the agents’ knowledge.

The research work reported here is an extension of previous work by Marco
Cadoli, introduced in ([9]), and presents an heuristic strategy for proposal-based
negotiation. The goal is to minimize the number of the interactions between
the automated agents involved in the process and thus speed-up the search of
an agreement - note that the speed of the process, or time complexity, largely
depends on the particular negotiation strategy adopted by each agent. In this
approach, negotiation spaces are considered to be convex, i.e., all points be-
tween two acceptable points are acceptable as well. The admissible offers are
internal points of the negotiation areas, and those will be the only exchangeable
information among the involved agents. The participating agents are capable of
logical reasoning and are able to reason in means of projections. As discussed
below (section [, reasoning by means of projection can help the agents com-
pute subsequent offers as each one can exclude certain points of the individual
negotiation areas.

Both the original Marco Cadoli’s approach and the proposed extension are
of interest in Computational Logic because involved agents are assumed to be
perfect logical reasoners, and then find a natural realization in logic-based agent-
oriented languages. In fact, as discussed in Section [6] we have implemented the
extended approach in one of these languages, namely in the DALI language. The
rest of this paper is structured as follows. Section[2lis an overview of related work.
In section Bl we present the theoretical background and the basic approach to
negotiation that we adopt, introduced by Marco Cadoli. In section [ we discuss
our motivations for extending this basic approach. Section [l is devoted to the
presentation of the features of the extended negotiation model. In section [0l we
present the implementation of the proposed strategy in DALI. In Section [1 we
conclude and outline future work.

2 An Overview

Numerous strategies have been proposed in order to improve the efficiency,
completeness and robustness of the process of negotiation (e.g.,
[OBITOTTT2TTATETET7IIRITY]). In [10], a number of agent strategies de-
signed for the 2002 TAC (Trading Agent Compelition) are reported and com-
pared. These techniques include machine learning, adapted, planning and hybrid
agents as well as heuristic-based strategies. The aim of [I1], instead, is to deter-
mine how an agent (with firm deadlines) can select an optimal strategy based on
an incomplete information about his opponent. STRATUM, reported in [12], is a
methodology for guiding strategies for negotiating agents in non-game-theoretic
domains.
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[13] analyzes how a group of agents can deal in presence of externalities. In
economics an externality is a cost or benefit resulting from a transaction that is
borne or received by third parties, thus affecting social welfare. This has been
done by adding to the worth of a bilateral coalition the amount of the nega-
tive externalities, that is created for the excluded player. The equilibrium values
are respectively increased or decreased in the presence of negative or positive
externalities. In [I4], the line of research has produced a number of results on
the hardness of dealing with positive and negative externalities while aiming at
maximization of the social welfare. In [I7] Matos et al. present an empirical evalu-
ation of a number of negotiation strategies in different kinds of automated agents
and environments. Rahwan et. al in [I8] have developed a protocol-independent
theory of strategy. In this approach, various factors that influence the generation
of strategies are defined and used by the automated agents. In [I9], instead, a
negotiation model and two types of negotiation strategies, called concession and
problem solving strategies, are presented.

The process of negotiation is considered as a constraint-based model in [9],[T6]
and [3]. In [16] and [3] negotiation is considered as a distributed constraint
satisfaction problem without however considering complexity issues. Instead,
the nature of the offers and the selection of variables assignment in the approach
of [9] are mainly aimed at obtaining a reasonable complexity in terms of number
of interactions steps. The speed of negotiation is tackled in [20], where however
only boolean variables are considered.

3 Theoretical Background: The Approach by Marco
Cadoli

In this paper, we discuss and extend the approach to reasoning by means of
projections introduced by Marco Cadoli and reported in ([9]). In this section,
we first present the approach and then discuss why some extensions are needed
and are useful.

In Marco Cadoli’s approach, negotiation is considered as a distributed con-
straint satisfaction problem. The assumptions made by Marco Cadoli [9] are the
following. (i) Negotiation involves two or more parties, that exchange proposals
until either an agreement is found (i.e., the last proposal is acceptable by all the
parties involved) or there is an evidence of the fact that no agreement is possible.
(ii) Negotiation involves variables (also called negotiation issues). (iii) A proposal
(or “offer”) is a communication act possibly containing the assignment of values
to the involved variables (“variable assignment”). (iv) Negotiation is restricted
with no loss of generality to involve only two variables. The approach however
could be easily generalized. (v) The negotiation space (also called negotiation
region or feasibility region or area of interest) associated to each party coincides
with the set of variable assignments that are considered to be acceptable, i.e.,
where the value assigned to each variable is within the range that the party
considers to be acceptable. (vi) As only two variables are involved, negotiation
spaces are restricted to be regions in the cartesian plane. (vii) A possible proposal
is in principle any point of the negotiation space. (viii) Negotiation spaces are
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restricted to be convex regions, i.e., all points included within the boundaries of
each individual region belong to the region itself and thus are equally acceptable
as potential agreements. Therefore, each negotiation space can be described by a
set of constraints which describe the region perimeter by describing the accept-
able range of values for each variable. (ix) Negotiation spaces are considered to
be polyhedral (thus, negotiation spaces admit a finite number of vertices). (x)
For one of the two agents, who wishes to minimize the number of negotiation
steps, possible proposals are restricted to be the vertices of negotiation spaces.

It is assumed (again without loss of generality) that negotiation is restricted
to two parties, that have agreed in advance on the issues which are involved. Of
course, the parties (that later on we will call “agents”) associate a meaning to
the variables, that in their view may represent prices, time, number of items,
etc. A negotiation starts when one of the two agents makes a proposal. The
other one will respond with a counter-proposal, and the process will go on in
subsequent steps (where each agent responds to the other one’s last proposal).
The other party is also called the “opponent”. The negotiation process will end
either because an agreement has been found, or if there is an evidence that no
agreement is possible. Since negotiation spaces are considered as convex regions,
a necessary condition for an agreement to be reached is that the intersection of
the feasibility regions is not empty.

As offers are for one of the two parties restricted to be vertices of a polyhedral
region, in Marco Cadoli’s approach the process will necessarily end whenever this
party has no more vertices to offer. This means that each negotiation process
always converges to an end in a finite number of steps. However, the number
of vertices can be, in the worst case, exponential in the number of variable.
Thus, the process has a worst-case exponential complexity in the number of
negotiation steps. Therefore, the approach defines a negotiation protocol aimed
at obtaining in the average case large savings in terms of number of proposed
vertices. The underlying assumptions about the participating agents are the
following. (a) Agents are perfect logical reasoners. (b) Agents communicate only
by exchanging proposals and there is no other form of shared knowledge. When a

rl

M(A1A2,BIB2) ¢ p»

Fig. 1. Lines segments projections
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proposal has been issued, it becomes common knowledge for all involved parties.
(¢) Agents are partially cooperative, in the sense that they are aware of the
negotiation protocol that they apply faithfully, i.e., they do not make offers that
they are not really willing to accept. (d) Agents do not cheat, i.e., they do not
make proposals that are not implied by the protocol at that step and, (e) during
a negotiation, they aim at minimizing the number of steps.

The main point of the approach is that agents are able to reason by means
of projections. This kind of reasoning is illustrated below. In this setting, we
consider the projection of a line segment over another one. We recall this concept
by means of an example (in Figure[l]). In the example, we consider the four points
Ay, As, By, By. The figure highlights two projections:

1. The projection of the segment A1 A3 over By Bs (denoted with IT(B1 B2, A1 As)
and delimited by 9B Bary ), and

2. The projection of By By over A1 Ay (denoted with IT(A; Ay, B1By) and de-
limited by 81A1A2$2).

Suppose for instance, referring to Figure 1, that points A; and As are offers
made by agent A, while By and B, are offers made by agent B. Suppose that the
steps, i.e., the order in which proposal are exchanged, are as follows: Agent A
offers Ay, agent B counter-offers By, agent A replies with Ay and agent B with
Bs. Agent A (being a perfect logical reasoner and being aware of convexity and
projections and being aware that the other agent has the same potential) is now
able to perform the following reasoning. From proposals A1 and A2 and from
the convexity hypothesis, agent B knows that the whole segment A1 As belongs
to A’s negotiation area. Then, as B aims at minimizing the number of steps, if B
had a point of its region on that segment, it would have offered it. As B instead
has offered Bs, agent A is allowed to conclude that the intersection between B’s
region and segment A; Ay is empty.

Also, A can consider that if B had any vertex on: either the line s1 that goes
beyond segment By A; in the direction of Ay or on the line s2 that goes beyond
segment BjAs in the direction of Ay then, again by convexity, the segment
AjAs would necessarily belong to B’s region: in fact, any polyhedral region
including as vertices B1, Bs and these two hypothetical points would also include
segment A; Ay, which is a contradiction. Therefore, A is able to exclude the whole
projection area delimited by segment A; As and by the two above-mention lines.
In fact, no point in there can be possibly acceptable for B, and thus A will
choose no such point as an offer. This area can be obtained, as observed before,
by making the projection of segment By Bs over Aj As.

Marco Cadoli’s approach adopts the strategy of concluding the process in the
minimum possible number of interactions: excluding portions of the feasibility
region actually leads to excluding many potential offers and thus reducing the
number of steps. In fact, agent B can perform a similar reasoning if A responds
to offer By with a counter-offer that does not constitute an agreement. The
reasoning can then be repeated by both agents after subsequent offers.

In [9] it has been proved that reasoning in terms of projections leads to a
protocol that always converges and in some cases allows for large savings in
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terms of number of proposed vertices (in the worst case, the number of agent’s
interactions is exponential in the number of variables and in the number of con-
straints). It is important to notice that the assumption of only one party being
restricted to offer vertices is essential. Otherwise, going back to the example we
may notice the following: if B were restricted to offer vertices then B might offer
a point on segment A; Ao only if B had a vertex there. Therefore, vertex-based
reasoning would be approximate and, though often leading to a speed-up, might
exclude possible agreements. Each agent is assumed to be self-interested, which
means that it ignores the other agents preferences. However, as discussed below,
if the agent considers its own preferences the potential speed-up can go lost.
This is why we devised to extend this approach.

For the sake of clarity, before discussing the extensions we consider a more
complete example. Let us consider as before a bilateral peer-to-peer negotiation
process involving two issues. Let us introduce the two involved agents, say Seller
and Buyer, represented by the respective negotiation areas reported in Figure 2
In this example, the negotiation area (indicated as Ra) of agent Seller can be
described by the set of constraints Cy = {X = 4, X <20,V > 13,Y <40, X »
—3Y+49, X < Y+4,X = (3/2)Y =50, X < —(3/4)Y +47}. The negotiation area
(indicated as Rp) of the agent Buyer can be described by the set Cp = {X =
15, X < 40,Y = 10,Y = 25}. Let V4 = {4; = (10,13), Ay = (17,40), A3 =
(4,15), Ay = (17,13), A5 = (20,16), Ag = (20,36), A7 = (4,36), As = (10,40)}
be the sets of possible proposals (set of vertices of the negotiation space) of
the agents Seller and Vg = {By = (15,10), By = (40,25), B3 = (40,10), By =
(15,25)} be the possible proposals of the agent Buyer. The intersection area
I = R4 () Rp is clearly not empty, and therefore there is a potential agreement
between the two agents.

Seller

RB  (Projection Area)

X

Fig. 2. An example

We assume that the negotiation process starts with a proposal from the agent
Buyer and that the sequence of proposals is as follows: Bi, A, By, As. Each
interaction has the side-effect of updating the knowledge base of the agents by
storing all proposals (both made and received) and possible new constraints.
The subsequent steps of the negotiation are determined as follows:
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— Since agent Buyer has received as counter-offer point A;, not included in its
negotiation area, it rejects the proposal.

— After two interactions, the agents have exchanged four proposals, namely
By, A1,By,As and none of them has been accepted. At this point, the
agent Buyer computes a projection area by connecting the couples of points
(B1,A2), (B2, A1) and (B1, B2) and by adding to its knowledge base the
new linear constraints that represent the new lines s; and ss. The agent
is able to conclude that the intersection of the other part negotiation area
with the projection area (delimited by the lines s1, s2 and by the segment
(B1, Bs)) is empty: therefore, no point in the projection area can be accepted
from the counter-part. In fact, agent Seller knows that the buyer having of-
fered points By and By implies (by the convexity hypothesis) that the whole
segment connecting the two points belongs to the buyer’s negotiation area.
Then, had the seller’s negotiation area admitted a non-empty intersection
with this segment, the seller would have offered a vertex either on the seg-
ment or beyond it. Since the buyer instead receives point As, it becomes
aware that no such intersection exists and, consequently, that no point in
the aforementioned projection belongs to the seller’s area.

The agent exploits the updated knowledge for selecting the next offer to
make, having excluded all points that belong to the projection area. Thus,
the agent Buyer understands that its vertex Bs cannot be accepted by the
opposer: it excludes this point from the set of proposals and proceeds by
offering its point By.

— Finally, this offer belongs to the negotiation area of the agent Seller and
therefore this proposal will be accepted. In this case, we say that the nego-
tiation process terminated successfully.

In the case where the last offer does not belong to the negotiation area of
the opposer, the agent Buyer would conclude that there is no further point
to propose and would terminate the negotiation process, having an evidence
of the fact that the intersection of the two negotiation areas is empty and
therefore there is no possible agreement.

4 Limits of the Original Approach

The reasons why we propose an extension to the basic approach are summarized
in the following points:

— We intend to allow the two agent to both follow the same protocol. If so,
limiting the possible proposals to vertices inducts problematic trades: in par-
ticular, this happens whenever the intersection area is not empty but includes
no vertices. For example, in Figure[3 there are two agents, Seller and Buyer,
whose individual negotiation areas are expressed through convex regions. It
can be seen that there is a potential agreement amongst the agents, since
the intersection area includes various points. However in this case, after six
interactions (namely, the sequence of proposals is By, A1, Ba, A2, B3, A3) the
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seller agent understands that there is no other vertex to propose: in fact, it
has previously excluded vertex A4. Thus, it concludes the process of negoti-
ation with a proof that there no possible agreement. This problem is due to
the fact that only vertices can be proposed.

Alg P A2

eller’s agent projection are:

.B4

buyer agent

B1O" b 53

exluded vertex
v ﬁ
Al %

“seller agent

Fig. 3. A first problematic interaction

— The “flat” nature of proposals (where all vertices are equally considered) may
lead, in real applications, to other problematic situations. In particular, it
may frequently happen that one or more issues considered by an agent have
greater priority than others. Let us assume that the agents try to reach an
optimal point with respect to an objective function. This objective function
can be chosen according to the particular context. In figure[d for example, we
consider two agents, Business and Client. We assume that Business wishes
to maximize the issue Y and that the sequence of interactions starts with
a proposal (from Client) of point B;. The interaction proceeds with A1, By
and As. In this case, the approach of reasoning by means of projections does
not allow us to obtain savings in terms of number of proposed vertices.

Bussines

B3

Client

B4

X

Fig. 4. A second problematic interaction

— As mentioned in [9], another problem of the approach of reasoning by means
of projections is that, since the agents have to remember all proposals (both
made and received), it is hard to find algorithms and data structures which
allow agents to store the entire sequence of proposals in polynomial space.
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— In [9] another problem is mentioned: the limit case where negotiation spaces
are convex (and finite) regions represented by circles. In this case, agents
are unable to select their offers since there are not vertices and there is an
infinite number of possible choices.

We have tried to overcome some of the problems discussed above. In
particular, we assume proposals to be not only vertices but also internal
points of the convex regions. Those points will not be randomly selected.
Their selection, instead, will be based on recent proposals by the same agent.

5 Proposed Extension

In this Section we illustrate the proposed extended approach by means of an
example and then we formally define the new negotiation algorithm.

5.1 An Example

Consider two agents A and B, represented by their negotiation areas denoted as
R4 and Rp. In general, as discussed above, the two bidding agents can reach an
agreement only in the case where R4 (| Rp # .

We propose a change in the nature of the proposals. In fact, in the extended
algorithm agents are allowed to make proposals that are internal points of the
feasibility regions, rather than just vertices. The strategy still takes advantage
from reasoning by means of projections: projection areas will be created dynam-
ically during negotiation, so that agents will be able to exclude many internal
points of the individual feasibility region. This implies a better accuracy in the
selection of offers.

Assume that the two negotiation areas R4 and Rp are those represented in
figure Bl The process of negotiation initiates with a proposal, for example by
agent A. The first proposal is assumed to be a random point of the individual
convex region of the agent. The second proposal of agent A, instead, is identified
as follows: A computes the circumference whose center corresponds to the point
of the first proposal and whose radius is R = §, where the choice of the margin
0 will depend on each specific application context (his margin can be chosen,

Agent B

-~ - new constraints
‘\Bl .

Intersection Area

Fig. 5. The trade-off strategy in multi-variable regions



186 S. Costantini, A. Tocchio, and P. Tsintza

for example, as in [21].). The proposal will be selected as a random point of the
semi-circumference closer to the opposer’s first proposal.

Clearly, we require it to be included on the individual feasibility region. In
this way, the agent tries to approach the opposer’s offer by proposing a point
that is more likely to be accepted, in an attempt to adapt its individual profile
to the one that can be assumed for the opposer. To do this, the agent has to
add new constraints to its knowledge base. If no such point is found, then the
next proposal will be a new random point of the feasibility region. After that,
each agent uses the reasoning on projection in the same way as in [9]. The
points included in the projection areas will be stored in the agents memory, by
adding the new constraints that represent each projection area to its knowledge
base.

All subsequent proposals will be selected in the following way: each agent
computes the segment that connects the two last offers of the opposer. Note
that, as discussed before, all points of this segment are necessarily included in
the opposer’s area. Therefore, if agent A area admits a non-empty intersection
with sg, being a perfect reasoner A will offer a point therein, thus reaching an
agreement. This constitutes an enhancement w.r.t. the basic approach where,
being each agent bound to offer vertices, we have the following two possibilities:
the case where agent A has a vertex on sg that it can propose, and thus the
agreement is found; the unfortunate case where it has no vertex on sg, and then
it can just offer a vertex beyond the segment, without being sure of that vertex
still belonging to the intersection.

If instead agent A area has empty intersection with sg, then the next pro-
posal will be selected in the same way as the second one, where however the
center of the new circumference will be A’s last proposal. Clearly, any the new
proposal must not be included in the projections made so far. The projection
areas may be described in terms of a set of linear inequations. In this way, the
agent will find the new points to offer by solving a new, or extended, DCSP
problem.

An advantage of the new algorithm is that agents do not have to store all the
potential proposals. Rather, the only information that an agent needs in order
to construct the new projections (i.e., the constraints), consists of the two most
recent proposals made by the two parties. If a satisfactory contract has not been
found yet, then the agent continues with the next proposal and so on.

5.2 Definition of the Algorithm

In this section we are going to illustrate the precise definition of the algorithm. In
the following, we consider proposal ;, as the i*" offer of the agent .J (J € {A, B}).
Each agent maintains a knowledge base K B.J. More precisely, we will denote by
K BA; the knowledge base of agent A after the i interaction. In the description,
expressions such as offer(.), accept(.) and reply enable agents communication.
Notice that an agent which performs a communication act considers it as an
action while the receiver perceives communications as external events.
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Algorithm AgentA

if (reply = accept)
then make(contract);
else
if (interest & proposalp,) /* first proposal to make
then
(a) identify proposal 4, as random point of the feasibility region;
(b) of fer(proposal 4, );
(¢) wait for a reply;
else
if (reply = (proposalp, € Ra))
then
accept(proposal g, );
else
ifi=1) /* second proposal to make
then
(a) find a random point Ay = (x2,y2) of the semi-circumference
closer to the proposalp, (radius = ¢);
(b) construct the projections;
(c) add the new constraints which represent the projection
area to the agent’s knowledge base in K BAs;
(d) of fer(proposal a,);
(e) wait for a reply;
else /* i > 1 (subsequent proposals)
if (Bi-1Bi(VRa #£10)
then
(a) find common point A; 41 of B;_1B;(\Ra;
(b) of fer(proposal ., );
else
do
(a) find random point A;+q (with ((Ai+1 € Ra) &
(Aiy1 ¢ KBA;))) upon the semi-circumference closer to
the proposalp,;
(b) construct the projections;
(c) add the new constraints which represent the projection
area to the agent’s knowledge base in KBA;1;
(d) of fer(proposal ., );
(e) wait for a reply;
while (proposalp, ¢ Ra) /*no agreement is found

Since there is a huge (infinite, in principle) number of points included in an
agent feasibility region, convergence of the proposed algorithm is not guaranteed.
The simplest way of coping with this problem is an upper bound to the number
of allowed interactions. A (bounded) number of random restarts can also be in
order. However, in [22] we show that some additional assumptions can guarantee
convergence, at the expense of less precision in the identified solution.
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The extended approach is not in contrast to the vertex-based basic one: rather,
it is complementary in many potential ways. A first possible integration may ap-
ply the extended algorithm whenever there is no more vertex to offer. A smarter
integration, which copes with the problem of local preferences/objectives, may
assume that an agent wishes to find an agreement which is as close as possible
to a preferred vertex: the extended approach can be applied starting from this
vertex (instead of starting randomly) so as to approach step-by-step the opposer
while staying as long as possible in the preferred subpart of the region. In this
sense, the new approach can be exploited to define “local search” variants of the
original one.

5.3 Performance of the Proposed Algorithm

In [22] we present many experiments to evaluate the performance of our ap-
proach, also in comparison to the original one, where performance is here
intended in terms of the number of iterations necessary to conclude the ne-
gotiation process. The number of iterations in our case is no more proportional
in the number of vertices, contrary to [9]. Rather, it heavily depends upon the
dimension of the intersection area and upon the distance between the first two
offers. However, tests have shown that our new approach results to be in average
case even more efficient than the original one.

Parameters that influence the number of iterations are at least: i) the size of
the intersection area, ii) the size of the negotiation areas, iii) the (Euclidean)
distance between the first two proposals and iv) the § parameter. Experiments
have shown that the size of the intersection area and the number of iterations
will tend to be in inverse proportion. Vice versa, the size of the negotiation areas
is proportional to the number of iterations which means that when the first one
increases the second one increases as well. The Euclidean distance between the
first proposals influences the algorithm performance since the more distant they
are the greater number of iterations is necessary to conclude the process.

The choice of the § parameter deserves some discussion: with very small §’s
each agent has to make a long way to approach the opposer’s proposal, requiring
many “steps”. If instead ¢ is too big, even bigger than the intersection area, then
some steps can “jump” the intersection and force to randomly walk around the
intersection itself. For the particular case of rectangular feasibility regions, the
best value for § appears to be a bit less that the smallest edge. In fact, even
starting from a random point there is a good chance to meet the intersection
quickly.

6 Implementation

The proposed approach has been implemented in the DALI language. DALI
([2312425126/27]) is an Active Logic Programming language designed for exe-
cutable specification of logical agents. DALI is a prolog-like logic programming
language with a prolog-like declarative and procedural semantics [2§]. In or-
der to introduce reactive and proactive capabilities, the basic logic language
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has been syntactically, semantically and procedurally enhanced by introducing
several kinds of events, managed by suitable reactive rules. In this section, we
present a snapshot of the code developed for the implementation of the above-
discussed negotiation algorithm. The implementation is quite straightforward,
as the proposed algorithm basically consists in communication and logical rea-
soning, which find a natural and direct implementation in DALIL.

All constraints (and therefore the representation of the negotiation area) as
well as the margin § to be used during the interaction are stored in the agent
profile and are loaded at runtime. This makes the implementation elaboration-
tolerant w.r.t. changes to the negotiation parameters. The proposals of the
counter-part is received by the agent by means of a DALI reactive rule: offerE (X,
Y, A) :> once(reconsider(X,Y,A)). Whenever an agent receives an offer it
checks if the offer is included in the negotiation area and responds accordingly,
by accepting the proposal. This is implemented via the following rule:

reconsider (X,Y,A):- area(X,Y),!,clause(agent(d),_),
messageA(clientnew,send_message (accept_pr(X,Y,A),A)).

Otherwise, by using the rule call random semicycle(X1,Y1, X,Y), the agent
selects a (random) point of the semi-circumference closer to the opposer’s pro-
posal, provided that it belongs to the negotiation area and does not belong to
the projection areas constructed so far. After that, the agent sends a message
containing the counter-offer by means of an action of the kind messageA. Fi-
nally, it updates its knowledge base by adding the new constraints that represent
the projection areas and by updating the last four proposals (both made and
received).

reconsider(X,Y,A) :- out_of_area(X,Y), (Az >X,Bz>Y,out(_,_,_,_,X,Y)),

call_random_semicycle(X1,Y1,X,Y),
messageA(clientnew, send_message (new_offer(X1,Y1,4),4)),

clause(agent(A),_), update_offerl(offer1(_,_),Ac,Bc),
update_offer2(offer2(_,_),X,Y) ,update_proposall(proposali(_,_),Az,Bz),
update_proposta2(proposta2(_,_),X1,Y1),clause(offers(L),_),
append([Y],L,L1), append([X],L1,L2),assert(offers(L2)),
retractall (offers(L)),clause(proposals(Lp),_) ,append([Y1],Lp,L3),
append ([X1],L3,L4) ,assert(proposals(L4)) ,retractall(proposals(Lp)).

As an example of the pro-active capabilities of the agent, we show how the
agent checks whether a point is included in the projection areas. This check
employs an internal event, represented by a pair of DALI rules. The conclusion
of the first rule is automatically attempted from time to time. If at some point
it becomes true (i.e., it can been proved), possibly returning some values for the
output variables, then the (instantiated) body of the second rule (the reactive
one) is executed.

update_history(X,Y):- offerP(X,Y,_).
update_historyI(X,Y):>
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[_,_,X02,Y02,X01,Yo1|L1]=Lo, [_,_,Xp2,Yp2,Xpl,Ypl|L2]=Lp,
new_condition(X,Y,Xp2,Yp2,X02,Y02,Xpl,Ypl,X01,Yo1),
update_constraints([Xo02,Y02,Xo01,Yo1|L1], [Xp2,Yp2,Xpl,Yp1|L2],X,Y).

new_condition(X,Y,X1,Y1,X2,Y2,X3,Y3,X4,Y4) : -
X4>X1,X2>=X4,Y2>=Y4 ,X1=X3,!,X1>=X,
coeff2(X1,Y1,X2,Y2,X3,Y3,X4,Y4,M2) ,Cost2 is Y4-(M2*X4), (M2*X)+Cost2>=Y,
coeff3(X1,Y1,X2,Y2,X3,Y3,X4,Y4,M3),Cost3 is Y2-(M3*X2),Y>=(M3*X)+Cost3.

Here, update historyI(X,Y")) is an internal event that is triggered each time
the agent has received a new offer (recorded as a past event, suffix P). The proce-
dure new condition(X,Y, Xp2,Yp2,X02,Yo02, Xpl,Ypl, Xol,Yol) builds the
new projection (by constructing the new constraints) while update constraints
([X02,Y02,X01,Yol|L1],[Xp2,Yp2, Xpl,Ypl|L2], X,Y), updates the knowl-
edge base of the agent by adding new constraints.

7 Concluding Remarks and Future Work

The extension proposed in this paper to the original approach by Marco Cadoli is
based upon adopting a heuristic algorithm which considers not only the vertices
as possible offers but also internal points of the feasibility regions. By comparing
the proposed algorithm with the one reported in [9] we conclude that our work
overcomes some problems, even though in our case the number of interactions is
no more proportional to the number of vertices. In fact, the proposed algorithm
has no requirements on the nature of the negotiation spaces (i.e., we relax the
limitation to polyhedric areas). The new approach can be usefully integrated
with the basic approach in many ways, thus trying to keep the efficiency of
vertex-based interaction whenever possible, and exploiting the additional flexi-
bility when deemed useful. The proposed extension in general produces a more
accurate solution, as it is able to consider all points included in the negotiation
areas. The performance of the extended algorithm is worse in case of negotia-
tion spaces with a limited number of vertices, but is better, in average, in the
opposite case (high number of vertices).

Even though the algorithm complexity, in some extreme cases, can be consid-
ered high we claim that the granularity of the search space can justify this fact.
Moreover, the additional complexity is a reasonable price to pay for the extra
features and for the possibility of other extensions. In fact, the approach can
be further extended: we may add new protocols, objective and utility functions.
We have been studying the possibility of considering as negotiation spaces not
only convex areas but also non-convex ones, by converting a non-convex region
into a convex one and by excluding all points that are not part of the original
negotiation area [29].
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Abstract. Defeasible argumentation systems are used to model commonsense
and defeasible reasoning. Current argumentation systems assume that an argu-
ment that appears to be justified also satisfies our expectation in relation to the
correct outcome, and, vice versa. In this paper we present an alternative represen-
tation of defeasible rules, tailored for argumentation based defeasible reasoning,
that is free of such an assumption. We provide a mapping between our argumen-
tation system and Dung’s abstract argumentation theory to show its efficacy.

1 Prelude

Arguments and Argumentations, as far as human activities go, are quite ancient. Argu-
ments are used to draw conclusions that are supported by available premises. Argumen-
tation, on the other hand, is the interactive process used to determine what conclusions
are to be ultimately drawn when multiple arguments are available that directly or in-
directly, support or oppose a conclusion. From the point of view of argumentation,
arguments are defeasible — a seemingly good argument can fall prey to an opposing
argument if the latter is justified, and remains so. This aspect of argumentation, that
it deals with arguments that are only prima facie justified, is exploited in connecting
argumentation theory with defeasible reasoning.

The defeasibility of reasoning is captured in different ways in different frameworks.
Very roughly, in the framework of default logic it is captured by assuming that the rules
are defeasible, allowing for alternative extensions depending on which set of defaults
get activated[] Often rules of thumb such as specificity E are used to break
the tie in case of conflicting rules. In circumscription [[14], it is achieved by minimizing
the extension of “abnormal” predicates. In the case of argumentation, it is achieved by
allowing some arguments to defeat other arguments.

In this paper we introduce an alternative representation of defeasible rules that is
context sensitive. Effectively, we assume that a mechanism exists that given an arbitrary
rule, 